Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - страница 7



Ниже приведена таблица, в которой подробнее описывается каждая из технологий и сфера ее применения.


Статистическое машинное обучение

Машинное обучение – это техника автоматической подгонки моделей к данным и «обучения» посредством тренировки моделей данными. Машинное обучение представляет собой одну из самых распространенных форм ИИ: в проведенном в 2017 г. опросе Deloitte 58 % из 250 «осведомленных о когнитивных технологиях» руководителей, компании которых уже внедряли ИИ, ответили, что в их бизнесе используется машинное обучение. Эта техника лежит в основе многих решений в сфере искусственного интеллекта и имеет множество вариантов. Резкий рост объемов данных внутри компаний и – особенно – за их пределами сделал возможным и необходимым применение машинного обучения для осмысления всей этой информации.

Более сложную форму машинного обучения представляет собой нейронная сеть – доступная с 1960-х гг. технология, которая используется для категоризации, например для выявления мошенничества в сфере кредитных операций. Она рассматривает каждую задачу как совокупность входящих и исходящих данных, а также переменных или «функций» различного веса, которые связывают входящие данные с исходящими. Работа этой технологии напоминает процесс обработки сигналов нейронами мозга, но аналогия с мозгом не слишком удачна.

Наиболее сложные формы машинного обучения предполагают глубокое обучение, или построение моделей нейронных сетей, имеющих множество уровней функций и переменных, предсказывающих результаты. В таких моделях могут быть тысячи функций, которые обеспечиваются более быстрой работой современных компьютерных архитектур. В отличие от более ранних форм статистического анализа, каждая функция модели глубокого обучения, как правило, мало что значит для человека. В связи с этим модели очень трудно или невозможно интерпретировать. В опросе Deloitte 34 % компаний использовали технологии глубокого обучения.

Модели глубокого обучения прогнозируют и классифицируют результаты с применением техники обратного распространения ошибки[13]. Именно эта технология ИИ стоит за целым рядом недавних прорывов – от победы над человеком при игре в го до классификации изображений в интернете. Отцом глубокого обучения часто называют Джеффри Хинтона из Университета Торонто и компании Google – и отчасти как раз из-за ранней работы над техникой обратного распространения ошибки.

В машинном обучении задействуется более сотни возможных алгоритмов, и большинство из них весьма причудливы. Спектр этих алгоритмов весьма широк и охватывает все – от повышения градиента (метода построения моделей, которые устраняют ошибки предыдущих моделей, тем самым повышая их способность к прогнозированию и классификации) до случайных лесов (моделей, которые представляют собой ансамбль моделей дерева принятия решений). Все чаще программное обеспечение (включая DataRobot, SAS и AutoML от Google) позволяет автоматизировать построение моделей машинного обучения, в ходе которого происходит апробация различных алгоритмов с целью выявить наиболее удачный[14]. Как только обнаруживается лучшая модель для прогнозирования или классификации тренировочных данных, ее используют для прогнозирования и классификации новых данных (иногда это называют скорингом).

Однако важен не только используемый алгоритм, но и принцип обучения создаваемых моделей. Модели обучения с учителем (на сегодняшний день наиболее распространенные в бизнесе) учатся на основе набора тренировочных данных с маркированным результатом. Например, модель машинного обучения, которая пытается предсказать мошенничество в банке, необходимо учить на системе, где мошенничество в некоторых случаях было однозначно установлено. Это непросто, поскольку частота мошенничества может составлять 1 случай на 100 000, и порой эту проблему называют