Водородное топливо. Производство, хранение, использование - страница 10
Для термического разложения метана необходимы высокие температуры (выше 1000°C). Использование катализатора помогает увеличить скорость реакции и таким образом снижает температуру, требуемую для конверсии природного газа. Технологической особенностью такого процесса является периодическое восстановление катализатора, что сопровождается выбросами диоксида углерода и повышает «углеродный след» получения водорода.
Плазменный пиролиз – это способ разложения метана в плазме (например, сверхвысокочастотного разряда). В этом случае в качестве источника энергии используется электроэнергия (сетевая или возобновляемая) и, соответственно, процесс не сопровождается «прямыми» выбросами диоксида углерода. Существенным преимуществом пиролиза метана является меньший удельный расход электроэнергии (оценивается менее 20 кВтч на килограмм водорода в сравнении, например, с электролизом воды.
При температурах выше 600°С происходит глубокое разрушение углеродной цепи алканов с образованием этилена (600–900°С), ацетилена (-1000°С) или сажи и водорода (1100–1600°С). Изменения продуктов реакции в зависимости от температуры отчетливо видны при пиролизе метана.
Деструкция метана при температурах выше 1200°С происходит очень глубоко с разрушением всех связей С – Н, что приводит к образованию сажи (углерода) и водорода.
При частичном окислении метан и другие углеводороды в природном газе вступают в реакцию с ограниченным количеством кислорода (как правило, из воздуха), которого недостаточно для полного окисления углеводородов до углекислого газа и воды. При меньшем, чем стехиометрическое количество кислорода, продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Затем, в реакции переноса воды-газа, окись углерода реагирует с водой для того, чтобы сформировать углекислый газ и больше водорода.
Производство водорода из природного газа или других углеводородов достигается также частичным окислением. Смесь топливо-воздух или топливо-кислород частично сгорает, что приводит к обогащению водородом синтез-газа. Водород и монооксид углерода получают в результате реакции конверсии водяного газа. Двуокись углерода может подаваться совместно для снижения отношения водорода к монооксиду углерода.
Частичное окисление является экзотермическим процессом, оно выделяет тепло. Этот процесс, как правило, намного быстрее, чем паровая конверсия, и требует меньшего объема реактора. Как видно из химических реакций парциального окисления, этот процесс изначально производит на единицу вводимого топлива меньше водорода, чем получается при паровой конверсии того же топлива.
Парциальное окисление реакции метана:
CH4+ ½O2→ CO + 2H2 (+ тепло)
Водогазовая сдвиговая реакция:
CO + H2O → CO2+ H2 (+ небольшое количество тепла)
В частичное окисление реакция происходит, когда субстехиометрический топливно-воздушная смесь или топливо-кислород частично сгорел в реакторе риформинга или частичного окисления. Различают частичное термическое окисление (TPOX) и каталитическое частичное окисление (CPOX).
Получение водорода в условиях промышленности связано с процессом выделения его из природного газа, вернее, из его основного компонента метана. Его смешивают с кислородом и паром воды. Выделение водорода происходит при высоких температурах. При нагревании смеси указанных газов до 800–900°C происходит реакция в присутствии катализатора, которая схематически может быть представлена в виде уравнения: