Все науки. №1, 2023. Международный научный журнал - страница 19



Но что ещё более удивительно – это то, что подобные неразрешимые системы не единичны и явно не редки. Можно привести плитки Вана, квантовую физику, продажа авиабилетов или же карточные игры. Но чтобы понять, как возникает неразрешимость в этих случаях, придётся вернуться во времена XIX века, когда в математике и случился этот раскол.

В 1874 году немецкий математик Георг Кантор опубликовал свою работу, дав начало «Теории множеств». Множества – это точно описанное собрание чего либо, к которым можно отнести всё что угодно – обувь, планетарии мира, людей. Но среди таких множеств есть и пустые – в них попросту ничего нет, но также есть и множества содержащие абсолютно всё – это универсальные множества.

Но Кантора интересовали не сколько множества вещей, сколько множества чисел, а именно множества натуральных чисел – это все целые, рациональных чисел – все числа, которые можно представить в виде дроби, сюда же входят и целые, а также входящие в множество рациональных – множество иррациональных чисел – число «пи», Эйлера, корень из двух, а также любое другое число, которое можно представить как бесконечную десятичную дробь. Вопрос Кантора заключался в том, чтобы определить каких чисел больше – натуральных или вещественных в промежутке от 0 до 1. С одной стороны, ответ кажется очевидным – обоих по бесконечности, то есть множества равны, но для демонстрации этого была создана некоторая таблица.

Идея таблицы предельно проста – каждому натуральному числу пусть соответствует определённое вещественное число в промежутке от 0 до 1. Но поскольку это бесконечные десятичные дроби их можно записать в случайном порядке, но самое главное, чтобы присутствовали абсолютно все и не было ни единого повторения. Если же в результате лишних чисел не остаётся при проверке некой супермашиной, то получалось, что множества одинаковые.

И даже если допустить, что это так, Кантор предлагает придумать ещё одно вещественное число следующим образом. Он прибавляет к первой цифре после запятой первого числа единицу, затем единицу ко второй цифре второго числа, единицу третьей цифре третьего числа и т.д., если попадается 9 отнять единицу, и получившееся число находится всё в том же промежутке между 0 и 1, при этом ни разу не повторяясь во всём списке, ведь от первого числа оно отличается первым, от второго вторым, от третьего третьим и т. д. числами до самого конца.

То есть от каждого числа оно отличается как минимум одной диагональной цифрой, отсюда и название – Диагональный метод Кантора, который доказывает, что между 0 и 1 есть больше рациональных чисел, чем всех натуральных. Получается, что бесконечности могут быть разными, откуда и вытекают понятия континуума, а также счётного и несчётного множества. И признаться, эта работа стала не плохим стрессом для математиков того времени, ибо уже на протяжении 2000 лет считавшаяся идеальной Евклидова геометрия, итак, переживала трудные времена благодаря Лобачевскому и Гауссу, открывшие неевклидову геометрию, это приводило к плохому определению предела – основам математического анализа.

А теперь господин Кантор решил внести и свой вклад в эти процессы, показывая, что бесконечность гораздо сложнее чем казалось. Из-за этого разгорелись не малые споры, поделив математиков на 2 лагеря – интуиционистов, которые считали, что работа Кантора кошмарны, а математика – это изобретение человеческого ума, а Канторовы бесконечности не могут просто быть. К большому сожалению, к ним относился и Анри Пуанкаре, написавший: «Потомки прочитают о теории множеств, как о хвори, которую им удалось побороть», а Леопольд Кроникер называл Кантора учёным-шарлатаном и растлителем молодых умов. А также старательно мешал его карьере.