Все науки. №1, 2023. Международный научный журнал - страница 23
Решая проблему остановки, можно было бы решать всё и предсказывать всё что угодно и тогда Тьюринг решил сделать небольшую хитрость введя вторую машину, которая определяла бы остановку первой машины. То есть вводились бы исходные данные, описывался бы алгоритм машины и новая машина «б», выдавала бы, остановится или не остановится ли первая машина, при этом остановка через какое время уже не волновало, как и устройство обоих машин.
Но можно усовершенствовать эту машину «б», добавив к ней ещё два действия: если же первая машина остановится, пусть усовершенствованная версия машины «б» – машина «с» включит бесконечный цикл и, если выдаётся через внутренний «б», что «а» не остановится – остановку первой машины. Программу для новой машины можно задать как некий код, но что произойдёт если задать для неё этот же код и как алгоритм, и как код? Довольно интересный вопрос, получится что сама машина «с», симулирует как поведёт себя эта же машина «с», введя её собственной код, определив своё собственное поведение при каких-то обстоятельствах.
Тогда получится, что если каким-то образом машина «с» посчитает, что она никогда не остановится, она остановится, если она посчитает, что остановится, она никогда не остановится. Любые выходные данные получаются ложными и, следовательно, изначальной машины «б» попросту не может быть и невозможно предсказать, остановится ли первая машина Тьюринга «а».
Из этого следовало бы, что математика не разрешима, нет такого алгоритма, который выводил бы теоремы из аксиом самостоятельно. Но с одной стороны тут явно нет причины останавливаться или опускать руки, ведь все эти системы сами по себе полные, это означает, что они прекрасно функционируют, для примера вся современная вычислительная техника действует по принципу первой машины Тьюринга, но имеет слабое место в представлении самой же себя; квантовые системы полностью полны, но вопрос определения энергетических щелей или скорее вопрос неопределённости Гейзенберга или сводящиеся с ним вопросы также имеют слабые места; игра «Жизнь» также полна по Тьюрингу, но имеет слабое место – вопрос остановится ли игра или нет и таких систем огромное количество.
Ещё более удивительно то, что некоторые подобные системы можно создать в других, так в самой игре «Жизнь» можно создать машину Тьюринга, в которой уже запускается игра «Жизнь». Мечта Дэвида Гильберта относительно полноты действительно воплотилась в современных вычислительных машинах. И для него основной идеей стало: «Мы должны знать, и мы будем знать», но к сожалению, правда в том, что мы не можем знать, но в попытках разобраться, мы открываем новое, меняя наш окружающий мир, к примеру Тьюринг осуществил свои идеи во время Второй мировой войны, предугадав алгоритм работы машины «Энигма» фашисткой Германии, по некоторым оценкам, это приблизило конец войны на 2—4 года.
После войны Тьюринг и Джон фон Нейман создали первый программируемый компьютер «Эниак», на основе наработок Тьюринга, хоть он, к сожалению, не дожил до этих дней. Но он изменил наш мир, его называют самой влиятельной фигурой в кибернетическом мире, все его идеи до сих пор действуют в любой вычислительной машине, но они возникли в результате мысли о машине Тьюринга, а этому уже нужно сказать спасибо Гильберту и его вопросам о разрешимости математики, поэтому дешифровщики Тьюринга и вся компьютерная индустрия – плоды удивительных парадоксов в математике.