Все науки. №2, 2024. Международный научный журнал - страница 6
Теперь можно определить отношение всей площади, попадая на которое можно вызвать начало реакции ко всей площади мишени, которое будет равняться отношению частиц, которые вошли в реакцию ко всем частицам – функции, выражающая в начальный момент времени это значение, направленные в пучке изначально (23).
Получая такое выражение, можно проинтегрировать обе части, указав, что количество частиц, как известно – функция, которая по определённому интегралу будет брать в себе границы от изначального количества направленных частиц к количеству взаимодействий в мишени для первого интеграла. Для второй же стороны этот определённый интеграл имеет границы от нуля до значения крайней толщины мишени (24—25) [].
Для второго интеграла границы меняются, как и знак выражения (26) с дальнейшим преобразованием (27).
Из этого соотношения можно получить уравнение, которое бы описывало количество частиц входящих во взаимодействие (28) и откуда можно было бы вычислить процентную эффективность ядерной реакции (29).
Таким образом, можно говорить о том, что ядерная реакция прошла в количестве (28) с общей процентной эффективностью (29) с кинетической энергией для вылетающих лёгких частиц (10) и общим зарядом вылетающих частиц (30) и получаемым в результате током (31), соответствующей площадью вылетающей мишени (32), наряду со всеми учитываемыми скоростями вылетающих частиц (33).
Кроме того, из (29) можно вывести и время ядерной реакции (34).
Но здесь были рассмотрены только лёгкие продукты реакции, которые в общей сумме дают мощность, определяемая через (35), как и выполняемая работа (36), а относительно тяжёлых ядер – их энергии не будет достаточной для ускорения, из-за чего она преобразуется в тепловую энергию (37) за счёт малых образуемых скоростей тяжёлых ядер (38).
Однако эта кинетическая энергия быстро распределяется по всему материалу, поэтому определённая в (37) температура относиться только к части образованных новых ядер, а для вычисления температуры мишени после реакции (39) достаточно распределить общую энергию полученных ядер на весь материал.
Таким образом были получены вылетающие частицы с определёнными параметрами и ядра с определёнными температурами. Однако есть такое понятие как выходящий кулоновский барьер. Величина, определённая в (3) является именно входящим кулоновским барьером, а для выходящего кулоновского барьера это выражение преобразуется как (40) с радиусом образуемого тяжёлого ядра, вычисляемый через (41).
К тому же интересным является случай, когда количество частиц больше двух (11), тогда необходимо обратиться к сумме, где кулоновский выходящий барьер начинает суммироваться для одной частицы, получающая энергию от всех остальных частиц и одноимённым с ней зарядом (42—47) и здесь не учитываются соотношения с прочими частицами в пучке, поскольку это явление действует на рассеяние пучка, когда же здесь учитываются масштабы именно после ядерной реакции с близкими расстояниями.
Где (42) используется для самой лёгкой частицы из всех полученных продуктов реакции в множестве (43); для всех промежуточных продуктов реакции (44) на множестве (45) с его условиями; для самой тяжёлой частицы (3.46) в масштабах множества (47).
По определению величина выходящего кулоновского барьера, как можно увидеть, описывается как энергия, которую приобретают вылетающие частицы, отталкиваясь друг от друга, сразу после преодоления ядерных сил и до убывания с ростом расстояния между ними и поэтому каждая из частиц получают эту энергию, за счёт чего, если формулы кинетических энергий лёгких продуктов реакции практически не меняются, то для тяжёлых частиц формулы (37—39) приобретают новую форму в (48—50).