Высокодисперсные коллоидные системы и меланины чаги - страница 16



а) времена релаксации линии ЯМР Лоренцевой формы: 1 – механическое перемешивание; 2 – ремацерация; 3 – реперколяция; 4 – Т>21 время релаксации длинной компоненты; 5 – Т>22 время релаксации короткой компоненты 6 – Т>21 время релаксации длинной компонент; 7 – Т>22 время релаксации короткой компоненты.

б) населенности соответствующих компонент ССИ: 1 – короткая компонента ССИ (Р>2); 2 – длинная компонента ССИ (Р>1); 3 – короткая компонента ССИ; 4 – длинная компонента ССИ.


Наблюдаемая корреляция релаксационных параметров водных извлечений показывает, что мы имеем дело с изменением конформационной структуры полимеров меланина, а не с особенностями механизмов релаксации, обусловленных присутствием жидкофазной компоненты в анализируемых коллоидных системах (рисунок 6).

Проведены исследования меланинов в твердом состоянии, которые выделены из водных извлечений. Меланин, выделенный из водного извлечения, полученного реперколяцией, обозначен как образец 1, ремацерацией – как образец 2 и с помощью перемешивания – как образец 3. Параметры релаксации, у образца 2, как и в дисперсионной среде, представляют собой некую среднюю величину по сравнению с аналогичными параметрами образцов 1 и 3 (рисунок 7).

При этом только у образца 2 в области повышенных температур не наблюдается расслоения по молекулярной подвижности. Подобное расслоение для образцов 1 и 3 свидетельствует о значительно более широком распределении в них полимерной компоненты по молекулярной массе или составу.

Анализ колодных систем, на основании рисунка 5, позволяет заключить, что колодная система водного извлечения, полученного ремацерацией, характеризуется относительной легкостью набухания в воде (гидрофильностью), а результаты, приведенные на рисунке 7, позволяют отметить, что меланин в ней имеет одновременно – максимально плотную и/или однородную упаковку индивидуальных полимерных цепей. Это может быть связано с большим вкладом однородных высокомолекулярных линейных фрагментов в полимерную структуру меланина, а также подразумевает возможность формирования значительного числа жесткоцепных упорядоченных фрагментов в его составе. Хотя строгого отнесения полимеров, входящих в состав меланина и вносящих вклад в формирование его структуры, по проведенным исследованиям сделать невозможно, но хочется напомнить об основных полимерах, входящих в состав всех меланинов, в том числе и меланина чаги, – это полисхариды и белки. Согласно полученным данным, можно заключить, что образуемая в составе водного извлечения макромолекулярная структура меланина обусловлена его состоянием в золе водного извлечения и зависит от способа получения золя. [162,169,170].

Согласно релаксационным характеристикам, сырьё чаги по молекулярной подвижности имеет двухкомпонентную структуру (таблица 1) [171]. Обе компоненты соответствуют жесткоцепным полимерным формам, однако имеют существенные различия. Длинная компонента, описываемая временем спин-спиновой релаксации Т>21, отвечает за состояние менее упорядоченной протонсодержащей структурной компоненты. Короткое время Т>22 характеризует состояние более упорядоченной компоненты. Во всех исследованных партиях сырья более жесткая компонента составляет около двух третей (в среднем 66 %) от общего количества протонсодержащего вещества, а менее жесткая компонента с более развитым молекулярным движением – приблизительно одну треть общего объема (в среднем 34 %). Качественно аналогичная картина наблюдается у всех меланинов (таблица 1). Принято считать, что основу меланина составляет трехмерный полимер нерегулярного строения, имеющий в своем составе остатки сиреневой, параоксибензойной, ванилиновой, галловой и протокатеховой кислот и их производных [43, 44, 147], в его состав еще входят белки [172] и полисахариды [173,174]. Следовательно, этот метод исследования также ставит под сомнение существование в меланине трехмерного полимера нерегулярного строения.