«Змей, охраняющий Шамбалу» 8-я книга - страница 12
Итак, по мере увеличения температуры величина энергии, выделяющейся при синтезе в единицу времени, возрастает. Но с ростом температуры увеличиваются и потери тепла из плазмы. Казалось бы, это плохо. Однако в рассматриваемой области температур (50-150 миллионов градусов) выделение энергии с повышением температуры растет быстрее потерь. А это означает, что существует какая-то температура, при которой величина выделяемой энергии сравняется с ее потерями. Она будет для данного процесса минимальной, или, как аттестуют ее физики, критической. Для реакции дейтерия с литием она равна примерно 40 миллионам градусов. На самом же деле необходимая температура должна быть более высокой. Ведь если теплящий костер может быстро погаснуть из-за потерь тепла, вызванных ветром или дождем. А если он хорошо разгорается, температура его высока и пламя пышет, то он будет гореть даже в непогоду, то есть при больших потерях энергии.
Что нужно еще предпринять, чтобы осуществить в плазме самоподдерживающуюся реакцию синтеза?
Мы пока почти ничего не говорили о ее плотности. Для примера была взята величина атомов в кубическом сантиметре, что приблизительно соответствует одной десятитысячной плотности земной атмосферы, то есть практически – это вакуум. Если ее еще понизить, то скорость выделения энергии – мощность – окажется слишком малой, чтобы представлять практический интерес. Ну, а если повысить, приравнять, например, к плотности воздуха при атмосферном давлении? Тут мы столкнемся с другой неприятностью: по мере роста температуры такой плазмы начнется стремительный рост давления, которое достигнет сотен тысяч атмосер. Никакие стенки сосудов не смогут удержать такой напор! Вот почему в различных проектах термоядерных установок плотность плазмы выбирают в диапазоне частиц в кубическом сантиметре.
Как это часто бывает, решение одной проблемы вызывает другую, которую также нужно решать. При таких низких плотностях в плазме, несмотря на очень высокие температуры, при которых естественны большие скорости движения, ядра элементов проходя громадный путь (до ста тысяч километров) прежде, чем вступают в реакцию синтеза. (Конечно, соударяться между собой они будут гораздо чаще, однако эти соударения будут упругими, что не приводит к синтезу.) Но если ядра совершают такой большой путь, значит, они будут налетать и на стенки сосуда и, отражаясь от них, терять энергию. Этого как раз и нельзя допускать.
Интересно, что не основной проблемой здесь оказалось не испарение стенок камеры, в которую заключена плазма. При указанной выше и даже большей плотности и температуре в десятки миллионов градусов стенки сосуда, сдерживающего плазму, не только не расплавляются, а даже не повреждаются. Проблема состоит в том, чтобы в результате контакта с ними плазма не охлаждалась и термоядерная реакция не затухала. Значит, нужно отыскать и освоить такой метод удержания её частиц, который исключал бы соприкосновение их со стенками.
На Солнце и в других звёздных телах удержание частиц происходит за счет сил гравитации, являющихся эффективным барьером на пути их движения. Однако на земле эти частицы так не удержать, слишком мало, здесь сила гравитации. И вот тут-то и наступил один из критических поворотов в проблеме УТС (управляемого термоядерного синтеза). Казалось что плазму при температуре в несколько десятков миллионов градусов невозможно «запереть» ни в какой лабораторной, а тем более в промышленной энергетической установке.