Чудеса арифметики от Пьера Симона де Ферма - страница 40
В 1621 году во Франции появилось издание этой книги на греческом языке оригинала с латинским переводом и замечаниями издателя, которым был Баше де Мезириа́к (Bachet de Méziriac). Это издание стало основой для работ Ферма по арифметике. Содержание книги составляют 189 задач и для всех даны решения. Среди них есть как довольно простые, так и очень трудные задачи. Но поскольку они решены, то создаётся ложное впечатление о том, что эти задачи не образовательные, а скорее развлекательные, т.е. они нужны не для того, чтобы формировать науку, а для проверки на сообразительность. В те времена по-другому и быть не могло, поскольку даже просто грамотных людей, умеющих читать и писать, было наперечёт.
Однако с точки зрения научной значимости представленных здесь задач и их решений, создание такой книги, не то, что средневековому Диофанту, но и всем учёным за всю обозримую историю было бы абсолютно невозможно. Более того, даже хотя бы должным образом усвоить содержание «Начал» Евклида и «Арифметики» Диофанта стало непосильной задачей для всей нашей науки. Тогда, естественно, возникает вопрос, как же всё-таки авторы этих книг сумели создать такие творения? Конечно, у науки он тоже возникал, но вместо ответа она хранит пока лишь своё гордое молчание. Ну что же, тогда ничто нам и не препятствует высказать здесь свою версию.
По всей видимости, это были каким-то образом сохранившиеся, а затем восстановленные письменные источники знаний погибшей в более ранние времена высокоразвитой цивилизации. Прочитать и восстановить их могли только особо одарённые люди, с экстрасенсорными способностями, позволяющими понимать письменные источники, независимо от носителя и языка, на котором они были изложены. Евклид, который вероятнее всего был царём, задействовал целый коллектив таких людей, а Диофант справился один, так и появилось авторство того и другого, хотя фактически над книгами работали не учёные, а всего лишь переписчики и переводчики. Но вернёмся теперь к той самой задаче 8 книги II «Арифметики» Диофанта:
Данное число в квадрате разложить на сумму двух квадратов.
В примере Диофанта число 16 раскладывается на сумму двух квадратов и его метод даёт одно из решений 4>2=20>2/5>2=16>2/5>2+12>2/5>2, а также бесчисленное множество других подобных решений>49. Но ведь это же не решение задачи, а всего лишь доказательство того, что любой целочисленный квадрат сколько угодно раз можно составить из двух квадратов, либо в целых, либо в дробных рациональных числах. Отсюда следует, что практическая ценность метода Диофанта ничтожна, поскольку с точки зрения арифметики дробные квадраты – это бессмыслица типа, скажем, треугольных прямоугольников или чего-то в этом роде. Очевидно, что эта задача должна решаться только в целых числах, но у Диофанта такое решение отсутствует и, естественно, Ферма стремится сам решить эту задачу, тем более что вначале ему она видится совсем не сложной.
Итак, пусть в уравнении a>2+b>2=c>2 дано число c и нужно найти числа a и b. Проще всего найти решение, разложив число c на простые множители:
c=pp>1p>2…p>k; тогда
c>2=p>2p>1>2p>2>2…p>k>2=p>2(p>1p>2…p>k)>2=p>i>2N>2
Теперь становится очевидно, что число c>2 раскладывается на a>2+b>2 только в том случае, если хотя бы одно из чисел p>i>2 также раскладывается на сумму двух квадратов>50. Так ведь это же замкнутый круг, поскольку нужно опять число в квадрате разложить на сумму двух квадратов. Но ситуация уже совсем иная, т.к. теперь-то нужно раскладывать