Экономический анализ: практические вычисления. Экономические расчеты онлайн - страница 4



При использовании детерминированных моделей необходимо выполнение следующих требований.

1) Факторы, включаемые в модель, должны быть отражением реально существующих объектов и явлений.

2) Связь между влияющими факторами и результатным показателем может быть выражена однозначной аналитической зависимостью.

3) Факторы должны находиться в причинно-следственной связи с изучаемыми показателями.

4) Все показатели факторной модели должны быть количественно измеримыми.

5) Для определения значений факторов должны существовать информационные источники.

6) Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов.

С формальной точки зрения детерминированная факторная модель – это алгебраическое тождество или определение расчета какого-либо показателя на основе других показателей.

Например, часто используют модель:

Прибыль = Выручка * РентабельностьПродаж (2.1)

С алгебраической точки зрения – это банальное тождество, поскольку по определению:

РентабельностьПродаж = Прибыль/Выручка (2.2)

Однако с содержательной точки зрения модель имеет смысл изучать, поскольку с ее помощью можно выявить: что и в какой мере повлияло на изменение прибыли в текущем периоде по сравнению с прибылью, полученной в предыдущем периоде. То есть, в какой мере изменение прибыли было вызвано изменением выручки текущего периода по сравнению с прошлым, а в какой мере – изменением рентабельности продаж. Иными словами – разложить общее изменение прибыли за период на сумму ее изменений из-за изменения в выручке и изменения в рентабельности продаж.

Используя модель 2.1 можно изучать, как и насколько изменения в выручке и изменения в рентабельности продаж влияли на изменение в прибыли. С другой стороны, используя модель 2.2 (определение показателя рентабельности продаж) можно изучать, как и насколько изменения в прибыли и выручке влияли на изменение рентабельности продаж. В первом случае результирующим показателем является прибыль, а влияющими факторами – выручка и рентабельность продаж, а во втором – результирующий показатель – рентабельность продаж, а факторы – прибыль и выручка. Все зависит от целей исследования. Если цель – выявление резервов роста рентабельности продаж – изучаем модель 2.2. Если цель – выявление резервов роста прибыли – изучаем модель 2.1.

Для решения такого рода задач используются специальные приемы, основные из которых мы далее рассмотрим.

Одним из простейших приемов исследования влияния отдельных факторов на результирующий показатель является метод выявления изолированного влияния факторов. Он предназначен для решения задачи выявления раздельного влияния изменения каждого из факторов на изменение результирующего показателя по отдельности, путем последовательной замены каждого из базовых значений факторов на текущие.

Пусть:

X= {x>1,x>2,…,x>n} – вектор базовых (плановых) значений факторов;

Y= {y>1,y>2,…,y>n} – вектор текущих (фактических) значений факторов;

Q=F (W) – функциональная зависимость показателя Q от значений факторов;

∆Q=F (Y) -F (X) – общее изменение показателя Q за прошедший период (различие планового и фактического значения показателя).

Тогда для выявления зависимости изменения Q от изменения фактора i вычисляется величина:

∆Q [i] = F (x>1,x>2,…,x>i-1,y>i, >xi+1,…,x>n) – F (x>1,x>2,…,x>n) i=1,2,…,n

Из приведенной формулы следует, что для вычисления прироста ∆Q [i] вычисляется разность между значением функции при одном измененном значении фактора i и значением функции при базовых значениях факторов.