Искусственный интеллект. С неба на землю - страница 18



Например, Microsoft представила семейство небольших моделей под названием Phi. По словам СЕО компании Сатьи Наделлы, решения модели в 100 раз меньше бесплатной версии ChatGPT, однако они справляются со многими задачами почти так же эффективно. Юсуф Мехди, коммерческий директор Microsoft, отметил, что компания быстро осознала, что эксплуатация крупных моделей ИИ обходится дороже, чем предполагалось изначально. Поэтому Microsoft начала искать более экономически целесообразные решения.

Также и Apple планирует использовать такие модели для запуска ИИ непосредственно на смартфонах, что должно повысить скорость работы и безопасность. При этом потребление ресурсов на смартфонах будет минимальным.

Сами эксперты считают, что для многих задач, например, обобщения документов или создания изображений, большие модели вообще могут оказаться избыточными. Илья Полосухин, один из авторов основополагающей статьи Google в 2017 году, касающейся искусственного интеллекта, образно сравнил использование больших моделей для простых задач с поездкой в магазин за продуктами на танке. «Для вычисления 2 +2 не должны требоваться квадриллионы операций», – подчеркнул он.

Но давайте разберем все по порядку, почему так сложилось и какие ограничения угрожают ИИ, а главное, что будет дальше? Закат генеративного ИИ с очередной ИИ-зимой или трансформация?

Ограничения ИИ, которые приводят к проблемам

Ранее я привел «базовые» проблемы ИИ. Теперь же давайте немного уйдем в специфику именно генеративного ИИ.

– Беспокойство компаний о своих данных

Любой бизнес стремится охранять свои корпоративные данные и любыми способами старается исключить их. Это приводит к двум проблемам.

Во-первых, компании запрещают использование онлайн-инструментов, которые располагаются за периметром защищенной сети, в то время как любой запрос к онлайн-боту – это обращение во внешний мир. Вопросов к тому, как хранятся, как защищены и как используются данные, много.

Во-вторых, это ограничивает развитие вообще любого ИИ. Все компании от поставщиков хотят ИТ-решений с ИИ-рекомендациями от обученных моделей, которые, например, предскажут поломку оборудования. Но своими данными делится не готовы. Получается замкнутый круг.

Однако тут надо сделать оговорку. Некоторые ребята уже научились размещать языковые модели уровня Chat GPT 3 – 3,5 внутри контура компаний. Но эти модели все равно надо обучать, это не готовые решения. И внутренние службы безопасности найдут риски и будут против.

– Сложность и дороговизна разработки и последующего содержания

Разработка любого «общего» генеративного ИИ – это огромные затраты – десятки миллионов долларов. Кроме того, вам нужно много данных, очень много данных. Нейросети пока обладают низким КПД. Там, где человеку достаточно 10 примеров, искусственной нейросети нужны тысячи, а то и сотни тысяч примеров. Хотя да, он может найти такие взаимосвязи, и обрабатывать такие массивы данных, которые человеку и не снились.

Но вернемся к теме. Именно из-за ограничения по данным тот же ChatGPT лучше «соображает», если с ним общаться на английском языке, а не на русском. Ведь англоязычный сегмент интернета гораздо больше, чем наш с вами.

Добавим к этому затраты на электроэнергию, инженеров, обслуживание, ремонт и модернизацию оборудования и получим те самые 700 000 $ в день только на содержание Chat GPT. Много ли компаний могут потратить такие суммы с неясными перспективами монетизации (но об этом ниже)?