Искусственный интеллект. С неба на землю - страница 20



В статье Искусственный интеллект: помощник или игрушка? я отметил, что нейросети просто собирают данные и не анализируют факты, их связанность. То есть чего больше в интернете / базе, на то они и ориентируются. Они не оценивают написанное критически. В тоге ГИИ легко генерирует ложный или некорректный контент.

Например, специалисты инженерной школы Тандона Нью-Йоркского университета решили проверить ИИ-помощника Copilot от Microsoft с точки зрения безопасности. В итоге, они обнаружили, что примерно в 40% случаев код, сгенерированный помощником, содержит ошибки или уязвимости. Подробная статья доступна по ссылке.

Еще один пример использования Chat GPT привел пользователь на Хабре. Вместо 10 минут и простой задачи получился квест на 2 часа.

А ИИ-галлюцинации – уже давно известная особенность. Что это такое и как они возникают, можно прочитать тут.

И это хорошо, когда случаи безобидные. Но бывают и опасные ошибки. Так, один пользователь спросил у Gemini, как сделать заправку для салата. По рецепту надо было добавить чеснок в оливковое масло и оставить настаиваться при комнатной температуре.

Пока чеснок настаивался, пользователь заметил странные пузырьки и решил перепроверить рецепт. Выяснилось, что в его банке размножались бактерии, вызывающие ботулизм. Отравление токсином этих бактерий протекает тяжело, вплоть до смести.

Я и сам периодически использую ГИИ, и чаще он дает, скажем так, не совсем корректный результат. А порой и откровенно ошибочный. Нужно провести 10—20 запросов с совершенно безумной детализацией, чтобы получить что-то вменяемое, что потом все равно надо переделывать / докручивать.

То есть за ним нужно перепроверять. И снова мы приходим к тому, что нужно быть экспертом в теме, чтобы оценить корректность контента и использовать его. И порой это занимает даже больше времени, чем сделать все с нуля и самому.

– Эмоции, этика и ответственность

ГИИ без правильного запроса будет склоняться к простому воспроизведению информации или созданию контента, не обращая внимания на эмоции, контекст и тон коммуникации. А по циклу статей о коммуникации мы уже знаем, что сбой в коммуникации может произойти очень легко. В итоге мы дополнительно ко всем проблемам выше можем получить еще и огромное количество конфликтов.

Также возникают вопросы относительно возможности определения авторства созданного контента, а также прав собственности на созданный контент. Кто несет ответственность за недостоверные или вредоносные действия, совершенные с помощью ГИИ? А как доказать, что авторство лежит именно за вами или вашей организацией? Возникает потребность в разработке этических стандартов и законодательства, регулирующих использование ГИИ.

– Экономическая целесообразность

Как мы уже поняли, самим разработать генеративный ИИ высокого класса может оказаться неподъёмной задачей. И у многих возникнет идея: «А почему бы не купить „коробку“ и не разместить у себя?» Но как вы думаете, сколько будет стоить такое решение? Сколько запросят разработчики?

А главное, каких масштабов должен быть бизнес, чтобы это все окупилось?

Что же делать?

Компании не собираются полностью отказываться от больших моделей. Например, Apple будет использовать ChatGPT в Siri для выполнения сложных задач. Microsoft планирует использовать последнюю модель OpenAI в новой версии Windows в качестве ассистента. При этом, тот же Experian из Ирландии и Salesforce из США, уже перешли на использование компактных моделей ИИ для чат-ботов и обнаружили, что они обеспечивают такую же производительность, как и большие модели, но при значительно меньших затратах и с меньшими задержками обработки данных.