Искусственный интеллект. С неба на землю - страница 22
Но это требует тщательной проработки и понимания поведения, запросов пользователя, или их стандартизации. То есть либо это уже не копеечное решение, которое все равно требует затрат на разработку, либо мы теряем в гибкости.
– Разрабатывать узкоспециализированные модели
Как и с людьми, обучать ИИ всему – занятие очень трудозатратное и имеет низкую эффективность. Если же пойти по созданию узкоспециализированных решений на базе движков больших моделей, то и обучение можно свести к минимуму, и сама модель будет не слишком большой, и контент будет менее абстрактным, более понятным, и галлюцинаций будет меньше.
Наглядная демонстрация – люди. Кто добивается больших успехов и может решать сложные задачи? Тот, кто знает всё, или тот, кто фокусируется на своем направлении и развивается вглубь, знает различные кейсы, общается с другими экспертами и тратит тысячи часов на анализ своего направления?
Пример узкоспециализированного решения:
– советник для управления проектами;
– налоговый консультант;
– советник по бережливому производству;
– чат-бот по производственной безопасности или помощник специалиста производственной безопасности;
Резюме
Хоть ГИИ пока только на стадии развития, потенциал у технологии большой.
Да, хайп вокруг технологии пройдет, инвестиции от бизнеса снизятся, появятся вопросы к ее целесообразности.
Например, уже 16 июня 2024 года Forbes опубликовали статью: «Зима искусственного интеллекта: стоит ли ждать падения инвестиций в AI».
Оригинал статьи доступен по QR-коду и гиперссылке.
Зима искусственного интеллекта: стоит ли ждать падения инвестиций в AI
В ней приводится интересная аналитика о циклах зимы и лета в развитии ИИ. Также приведены мнения Марвина Минского и Роджера Шанка, которые еще в далеком 1984 году на встрече американской ассоциации искусственного интеллекта (AAAI) описали механизм, состоящий из нескольких этапов и напоминающий цепную реакцию, которая приведет к новой зиме в ИИ.
Этап 1. Завышенные ожидания бизнеса и публики от методов искусственного интеллекта не оправдывают себя.
Этап 2. СМИ начинают выпускать скептические статьи.
Этап 3. Федеральные агентства и бизнес снижают финансирование научных и продуктовых исследований.
Этап 4. Ученые теряют интерес к AI, и темп развития технологии замедляется.
И мнение экспертов сбылось. В течение пары лет наступила ИИ-зима, а потеплело лишь в 2010-х годах. Прямо как в «Игре Престолов».
Сейчас же мы находимся на очередном пике. Он наступил в 2023-м после выхода ChatGPT. Даже в этой книге для понимания читателя я часто привожу и буду приводить примеры из области данной LLM, хотя это и частный случай ИИ, но очень понятный.
Далее в статье приводится анализ по циклу Минского и Шанка к текущей ситуации.
«Этап 1. Ожидания бизнеса и публики.
Всем очевидно, что ожидания революции от AI в повседневной жизни пока не оправдались:
– Google так и не смог полноценно трансформировать свой поиск. После года тестирования технология AI-supercharged Search Generative Experience получает смешанные отзывы пользователей.
– Голосовые ассистенты («Алиса», «Маруся» и др.), возможно, стали немного лучше, но их вряд ли можно назвать полноценными ассистентами, которым мы доверяем хоть сколько-нибудь ответственные решения.
– Чат-боты служб поддержки продолжают испытывать сложности в понимании запроса пользователя и раздражают ответами невпопад и общими фразами.