Искусственный интеллект в государственном и муниципальном управлении. Учебное пособие - страница 17



4. Создание отчетов в реальном времени

Одним из преимуществ ИИ является возможность автоматического создания отчетов в реальном времени. Это особенно важно для учреждений, которым необходимо постоянно отслеживать ключевые показатели эффективности (KPI). Российские аналоги таких систем, как Google Data Studio, могут подключаться к данным в реальном времени и автоматически обновлять отчеты. Это позволяет учреждениям всегда иметь доступ к актуальной информации и быстро реагировать на изменения.

5. Автоматизированная отчетность и распределение

После создания отчетов ИИ может автоматизировать процесс их распределения среди заинтересованных сторон. Системы могут автоматически отправлять отчеты по электронной почте или загружать их в облачные хранилища. Министерства и ведомства могут настроить автоматическую отправку отчетов на основе расписания. Например, финансовые отчеты могут быть автоматически сформированы и отправлены руководству каждую пятницу в конце рабочего дня.

Приведём несколько примеров успешной автоматизации создания отчетов с помощью ИИ.

СКБ Контур купил сервис аналитики и коммуникаций с клиентами Scena. one. В его основе лежит искусственный интеллект, благодаря которому сервис составляет отчёты, агрегируя данные CRM-систем о предпочтениях действующих и временно неактивных клиентов и позволяя прогнозировать их будущие потребности.

МегаФон для формирования отчётов купил разработчика аналитических ИИ-платформ oneFactor, специализирующегося на разработке аналитических платформ на базе искусственного интеллекта для банковской сферы, страховых компаний, электронной коммерции, ритейла и туризма.

Тинькофф представил ИИ систему для бизнес-аналитики, отчётов и прогнозирования под названием ETNA, с помощью которой можно анализировать и прогнозировать основанные на данных процессы – от количества осадков предстоящей зимой до потребностей компании в найме новых сотрудников.

Автоматизация составления отчётов состоит из нескольких практических кейсов, которые с помощью ИИ-систем можно реализовать в государственных и муниципальных органах власти:

2.1. Автоматизация составления текущих отчётов. ИИ может автоматически собирать данные из различных источников (например, базы данных, электронные таблицы) и составлять на их основе текущие отчёты как по отдельно взятому ведомству или органу власти, так и в рамках межведомственного взаимодействия. Это позволит сократить время на подготовку отчётов и уменьшить вероятность ошибок.

2.2. Генерация отчётов о выполнении государственных программ. Искусственный интеллект может анализировать данные о реализации конкретных государственных программ из различных источников (например, базы данных, электронные таблицы, текущие отчёты ведомств) и автоматически генерировать отчёты о достигнутых результатах в рамках конкретной госпрограммы. Это поможет государственным органам получать актуальную информацию о ходе выполнения программ.

2.3. Составление финансовых отчётов для государственных и муниципальных учреждений. В рамках этого кейса можно разработать модель ИИ, которая будет автоматически составлять финансовые отчёты на основе данных бухгалтерского учёта по исполнению бюджетов. Это упростит процесс бюджетирования, подготовки финансовых отчётов и повысит их точность.

2.4. Применение ИИ для глубокого анализа статистических данных. Глубокий анализ статистических данных с помощью ИИ может помочь государственным и муниципальным учреждениям выявлять медленно формирующиеся скрытые тенденции и неявные закономерности.