Как было на самом деле. Каждая история желает быть рассказанной - страница 65



И все мы прекрасно понимаем, что работа диссертанта – это большой шаг вперед, сделанный в науке математике, и что автор ее не только достоин степени доктора, но он достоин еще гораздо более высокого звания, звания настоящего математика, настоящего ученого и настоящего представителя своей науки. Вот то впечатление, которое я вынес от этой защиты и которым хотел поделиться с вами, членами Ученого Совета». (Конец цитаты).


Теперь вкратце и наглядно объясню – что такое «проблема Плато», и что, собственно говоря, мне удалось сделать. Когда бельгийский физик Жозеф Плато в XIX веке начал опыты по изучению конфигурации мыльных пленок, он вряд ли предполагал, что они послужат толчком к развитию целого научного направления, бурно развивающегося до настоящего времени и известного под названием «проблема Плато». Опыты Плато хорошо знакомы нам с детства – это выдувание мыльных пузырей или конструирование мыльных пленок, затягивающих проволочный контур.

Берем гибкую тонкую проволоку, туалетное мыло и миску воды. Растворяем мыло в теплой воде, добавляем ложку глицерина. Из проволоки делаем замкнутый контур с ручкой. Опускаем его в мыльный раствор и осторожно вынимаем. На нем повисает красивая радужная мыльная пленка, ограниченная этим контуром. Замысловато изгибая контур, можно получать самые разнообразные формы пленок. Физический принцип, лежащий в основе возникновения мыльных пленок, достаточно прост: физическая система сохраняет свою конфигурацию только в том случае, когда она не может легко изменить ее, заняв положение с меньшим значением энергии. Энергия мыльной пленки пропорциональна ее площади. Поэтому жидкая пленка превращается в эластичную поверхность, стремящуюся минимизировать свою площадь, и, следовательно, минимизировать энергию натяжения, приходящуюся на единицу площади. Минимальные поверхности встречаются в живой природе и физике как поверхности раздела двух сред с одинаковым давлением, находящихся в равновесии.

Таким образом, математической моделью мыльной пленки служит гладкая (или кусочно-гладкая) поверхность минимальной площади, затягивающая данный контур, рис. 3.38. Математики называют ее минимальной поверхностью. Такие поверхности являются математическим объектом, достаточно хорошо моделирующим физические мыльные пленки. Математическая теория минимальных поверхностей относится к так называемому вариационному исчислению – области анализа и геометрии, возникшей в XVIII веке. В наши дни для развития теории минимальных поверхностей привлекаются современные средства топологии и дифференциальной геометрии. Это богатая и сложная наука. Здесь переплетаются теории дифференциальных уравнений, групп Ли, гомологий и когомологий, бордизмов и т. д.


Рис. 3.38. Мыльная пленка = минимальная поверхность, затягивающая замкнутый проволочный контур.


Рассмотрим сначала простой случай, когда контур не слишком сильно изогнут – а именно, когда его можно взаимно-однозначно спроектировать на выпуклый контур, лежащий в некоторой плоскости. Тогда, оказывается, существует одна и только одна минимальная поверхность, затягивающая данный контур. Если же не ограничиваться простейшими контурами, то теорема единственности перестает быть верной: на один и тот же контур иногда можно натянуть несколько совсем разных минимальных поверхностей, рис. 3.39.


Рис. 3.39. Несколько минимальных поверхностей, затягивающих один и тот же граничный контур.