КонтрПлагиат методом перефразирования и рерайта для антиплагиат ВУЗ. Как повысить оригинальность текста за несколько часов и пройти проверку с первого раза - страница 16



Помогает предотвратить повторение и поддерживает разнообразие текста, обеспечивая более естественное и разнообразное изложение. Это важно для создания текстов без ненужных повторений.

Значение может быть числовым, например, от 0 до 2. Например, «presence_penalty=0.5» применяет умеренный штраф за повторение слов, а «presence_penalty=1.5» увеличивает штраф, уменьшая вероятность повторений.


Repetition Penalty

Параметр «repetition_penalty» используется для снижения вероятности повторения одинаковых слов или фраз в генерируемом тексте. Он применяется для повышения разнообразия и предотвращения избыточного повторения в результате работы модели.

Этот параметр настраивает степень наказания за повторение слов, что помогает избежать монотонности и однообразия в тексте. Чем выше значение, тем сильнее модель штрафует за повторения, что способствует более оригинальному контенту.

Значение может быть числовым, например, от 1.0 до 2.0. Значение «repetition_penalty=1.0» соответствует нейтральному штрафу, «repetition_penalty=1.5» увеличивает штраф за повторения, а значения выше 1.5 предоставляют значительный штраф.


Repetition Penalty Weight

Параметр «repetition_penalty_weight» регулирует степень штрафа за повторение слов или фраз в генерируемом тексте. Он позволяет более гибко настраивать, как сильно модель должна избегать повторений.

Позволяет управлять весом, который применяется к штрафу за повторение, чтобы добиться желаемого уровня разнообразия. Это помогает лучше контролировать качество и креативность текста, особенно в длинных генерациях.

Значение может быть числовым, например, от 0.1 до 2.0. Значение «repetition_penalty_weight=1.0» является стандартным, а значения выше 1.0 увеличивают штраф, в то время как значения ниже 1.0 уменьшают его.


Stop Sequences

Параметр «stop_sequences» определяет последовательности слов, при обнаружении которых генерация текста должна быть остановлена. Это позволяет предотвратить продолжение текста за пределы заданных границ или контекста.

Используется для контроля завершения текста и предотвращения появления нежелательных окончаний. Полезен для создания текстов, которые должны соответствовать определённым критериям или не выходить за рамки заданной темы.

Значение представляет собой список строк, например, «stop_sequences= [„Конец“, „Заключение“]», при обнаружении которых модель завершит генерацию. Могут быть указаны различные последовательности, в зависимости от требований к окончанию текста.


Temperature

Параметр «temperature» управляет степенью случайности в выборе следующего слова при генерации текста. Он изменяет распределение вероятностей, делая генерацию более креативной или более предсказуемой.

Высокие значения температуры (например, «temperature=1.2») делают распределение более равномерным, что увеличивает разнообразие и креативность текста. Низкие значения (например, «temperature=0.7») делают модель более детерминированной и менее разнообразной.

Значение может быть числовым, например, от 0.1 до 2.0. Значение «temperature=1.0» представляет стандартный уровень, а значения выше 1.0 повышают креативность, в то время как ниже 1.0 уменьшают её.


Temperature Decay

Параметр «temperature_decay» управляет изменением температуры в процессе генерации текста. Он позволяет динамически изменять уровень случайности, начиная с более высокого значения и уменьшая его по мере генерации.