Краткий курс по статистике - страница 10
Среднее линейное отклонение невзвешенное:
где x>i– величины совокупности;
n – частота (повторяемость индивидуальных значений признака).
Среднее линейное отклонение взвешенное:
Недостаток среднего линейного отклонения заключается в том, что приходится иметь дело не только с положительными, но и с отрицательными величинами.
Также выделяют дисперсии (групповые, межгрупповые, общие) и среднее квадратическое отклонение.
4. Информативность показателей вариации повышается, если они рассчитываются для целей сравнительного анализа. Показатели, рассчитанные по одной совокупности, сопоставляются с показателями, рассчитанными по другой аналогичной совокупности или по той же самой, но относящейся к другому периоду времени. Например, исследуется динамика вариации курса доллара по недельным или месячным данным.
Показатели вариации можно использовать не только в анализе колеблемости или изменчивости изучаемого признака, но и для оценки степени воздействия одного признака на вариацию другого признака, т. е. в анализе взаимосвязей между показателями.
Для измерения вариации признака используют абсолютные и относительные показатели.
Абсолютные показатели вариации – размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия.
Относительные показатели вариации (коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.) – результат сопоставления абсолютных показателей. Их суть состоит в соотнесении абсолютных показателей вариации со значением средней величины как характеристики центра распределения.
5. Различают следующие относительные показатели вариации: коэффициент осцилляции, коэффициенты вариации.
Коэффициент осцилляции (V>R):
где R – размах вариации;
Линейный коэффициент вариации (
или
где
Ме – медиана.
Коэффициент вариации (V>σ) определяет удельный вес среднего квадратического отклонения в размере средней величины и служит мерой однородности совокупности:
где σ – среднее квадратическое отклонение. Совокупность считается однородной, если значение данного показателя не превышает 33 %.
Эмпирический коэффициент детерминации (η>2) отражает определенную изменением признака-фактора долю вариации результативного признака:
η>2= δ>2: δ>2>общ,
где δ>2 – межгрупповая дисперсия;
δ>2>общ – общая дисперсия.
Эмпирическое корреляционное отношение (η) определяет тесноту связи между изменением признака-фактора и последующим изменением признака-результата – корень из коэффициента детерминации:
Чем ближе к единице значение эмпирического корреляционного отношения, тем теснее связь между изменением признака-фактора и признака-результата.
10. Дисперсия
1. Различают невзвешенную и взвешенную дисперсии.
Дисперсия (σ>2) – сумма квадратов отклонений значений показателя от средней.
Дисперсия невзвешенная
Дисперсия взвешенная
Если необходимо не только изучить вариации признака совокупности, но и исследовать количественные изменения признака по однородным группам совокупности, то помимо общей средней для всей совокупности необходимо просчитывать и частные средние величины по отдельным группам.