Макрокинетика сушки - страница 10



.

Положения, устанавливаемые тремя теоремами подобия, справедливы для любого вида переноса. Они используются как для постановки экспериментов, так и для математической их обработки.

Теплоперенос. Критерии теплопереноса выводятся аналогично выводу критериев переноса количества движения. Рассмотрим подобное преобразование уравнения Фурье-Кирхгофа (1.27) для одномерного теплопереноса, когда t = f (x, τ) в отсутствии источников тепла для объекта моделирования (индексы опустим):



Аналогичное уравнение с учетом констант подобия запишем для модели:



Чтобы уравнения (1.47) и (1.48) были идентичны, все множители из констант подобия должны быть равны, тогда:



Из первого равенства выражения (1.49), подставив значения констант подобия, получим безразмерный комплекс – критерий Фурье, который характеризует изменение теплопереноса теплопроводностью во времени:



Из второго равенства выражения (1.49), подставив значения констант подобия, получим другой безразмерный комплекс – критерий Пекле, который представляет собой отношение теплопереноса за счет движения среды (конвективный) и за счет теплопроводности (молекулярный):



Он аналогичен по форме критерию Рейнольдса, который может быть рассмотрен как отношение скоростей переноса количества движения конвективного и молекулярного.

Поскольку на конвективный теплоперенос влияют условия движения среды и описывающие его дифференциальные уравнения решаются совместно с уравнениями движения потока, в критериальную зависимость, описывающую теплоперенос, должны входить и критерии гидродинамического подобия. Это критерии. Но, Fr, Re и Г. Критерий Эйлера обычно не входит в эту зависимость, т. к. не является определяющим для теплопереноса.

Так как в критерии Fr и Re входит скорость, используется их комбинация – критерий Галилея, не содержащий скорости:



или критерий Архимеда, включающий отношение плотности одной среды и разности плотностей двух сред:



Если разность плотностей вызвана термическим расширением среды (>T – коэффициент термического расширения), то:



,

где Т – абсолютная температура.

После подстановки этого соотношения в критерий Архимеда получим критерий Грасгофа:



Для газов

,

тогда критерий Грасгофа примет вид:



При сочетании критерия Ре с критерием Re получим критерий Прандтля, характеризующий теплофизические свойства среды или соотношение полей скоростей и температур:



Если граничным условием теплопереноса является линейность теплового потока – уравнение (1.23) тогда в сочетании с уравнением (1.29) получим:



Из этого соотношения, переходя к размерным величинам, получим критерий Нуссельта, характеризующий подобие граничных условий:



Критерий Нуссельта рассматривают также как безразмерный коэффициент теплопереноса, поэтому он является определяющим. С учетом рассмотренных критериев перенос тепла можно рассматривать в виде следующей критериальной зависимости:



Для стационарного теплопереноса из зависимости (1.60) исключаются критерии. Но и Fo, содержащие время.

Критерий Nu является наиболее удобной величиной для расчета молекулярного переноса или переноса в ламинарном движении [10]. В случае развитой турбулентности более удобным оказывается использование критерия Стентона:



Тогда в зависимости (1.61) определяющим критерием вместо Nu будет критерий St.

Массоперенос. Критерии массопереноса и общая критериальная зависимость выводятся аналогично теплопереносу. Для этого рассмотрим подобное преобразование дифференциального уравнения массопереноса (1.22). Для одномерного потока, когда