Математические модели в естественнонаучном образовании. Том II - страница 15



Существует несколько деревьев (на самом деле, пять деревьев имеют оценку экономии 2), которые можно считать наиболее экономными. Когда это происходит, использование метода экономии требует отчета обо всех найденных деревьях, которые достигают минимального балла, потому что все они одинаково хороши согласно сформулированным критериям их выбора.

При работе с реальными данными последовательности, конечно, нужно подсчитать количество мутаций, необходимых для дерева, среди всех сайтов в последовательностях. Это можно сделать так же, как и раньше, просто обрабатывая каждый сайт параллельно. Пример приведём на рисунке 5.20.



Рисунок 5.20. Вычисление оценки экономии для дерева на трех участках.

Переходя вверх по дереву, начиная с 2 последовательностей таксонов, ATC и ACC в крайнем левом углу, видим, что там не нужны мутации ни в первом, ни в третьем узлах, но понадобятся мутации во втором. Таким образом, количество мутаций теперь равно 1, а вершина предка помечена, как показано на рисунке. На вершине, где соединяется ребро из третьего таксона, обнаруживаем, что первый участок нуждается в мутации, второй нет, а третий снова нуждается. Это увеличивает количество мутаций на 2, чтобы суммарно дать 3. Наконец, в корне обнаруживаем, что нужна мутация только во втором месте, для окончательной оценки экономии 4.

Хотя это нетрудно сделать вручную с небольшим количеством сайтов, когда считается много сайтов, это становится очень трудоёмкой задачей. Хуже то, что если есть взять еще немного таксонов, то количество топологий деревьев, которые необходимо учитывать, огромно. Таким образом, метод экономии на практике выполняется только с помощью компьютера. На самом деле, при большом количестве таксонов количество возможных деревьев настолько велико, что часто компьютерные программы проверяют не все, а только определенные конфигурации, чтобы выбрать наиболее экономное сочетание. Хорошее программное обеспечение, управляемое профессиональными пользователями, часто поможет найти то, что, вероятно, будет самыми экономными деревьями, но в этом нет никакой гарантии. Это вызывает некоторое смущение у исследователей, публикующих деревья, найденные машинным перебором. Так как, не имея малейшего представления, насколько хороши найденные варианты, им приходится использовать то, что есть, пока фактически случайным образом не будет найдено ещё более оптимальной конфигурации.

Можно исключить некоторые варианты из перебора при использовании метода экономии, если заметим, что не все сайты будут влиять на количество мутаций, необходимых для дерева. Очевидным случаем является то, что если все последовательности имеют одно и то же основание в определенном сайте, то всем деревьям потребуется 0 мутаций для этого сайта. Таким образом, можем исключить этот сайт из последовательностей перед применением алгоритма. Менее очевиден случай, когда в сайте все последовательности имеют одно и то же основание (например, А), за исключением не более чем одной последовательности, каждая из которых имеет другие основания (С, Т и G). В этом случае, независимо от топологии дерева, если поставим A в каждой внутренней вершине, то получим минимально возможное количество мутаций. Это означает, что такой сайт не повлияет на то, какое дерево выберем как самое экономное. Данная возможность приводит к возникновению следующего понятия.