Математика для гиков - страница 4





Чтобы понять почему, представьте, что вы живете в двухмерном пространстве. Теперь представьте, что в этом пространстве есть ограниченная линия, вроде двухмерной веревки. Если кто-нибудь попросил бы вас сложить из нее цифру восемь так, чтобы веревка не пересекала себя, то вы бы понятия не имели, как это сделать. Как такое может быть возможно? Чтобы это сделать, вам нужно было бы «приподнять» линию в трехмерное пространство; в этом случае фигуру можно было создать без пересечения.



Вернемся к связи между бутылками Клейна и судьбой вселенной. Будущее вселенной – включая судьбу звезд, галактик и даже самого космоса – зависит отчасти от общего вида вселенной. Ученые называют множество возможных форм вселенной, которые были бы совместимы с их наблюдениями: некоторые формы напоминают лист бумаги, который бесконечно простирается во всех направлениях – трехмерное пространство, известное как Евклидово пространство с размерностью, равной 3, – другие же «замкнуты», это значит, что хоть они и очень большие, они в конце концов замыкаются. (Примером такой замкнутой фигуры является шар. Если вы начнете идти от одной точки на поверхности шара и будете идти по прямой, то непременно вернетесь на начальную позицию.) Однако насколько нам известно, вселенная может принимать разные формы. Мы живем на сферическом объекте, но наша окружающая обстановка подсказывает нам, что мы живем на бесконечно большой плоской равнине, то место, где мы живем во вселенной, дает нам основание полагать, что вселенная простирается по прямым линиям во всех направлениях, но на самом деле на расстояниях, за которыми мы не можем наблюдать, вселенная может выглядеть как седло или цилиндр. Или же она может иметь форму бутылки Клейна.

Так что если вы думали, что четвертое измерение не имеет никакого отношения к вашей повседневной жизни – подумайте еще раз. В действительности вы можете в нем жить.

Феликс Клейн

Родился в 1849 году, преподавал математику в Геттингенском университете и проявлял небывалый интерес к геометрии. Он также был известен своим браком с внучкой философа Георга Вильгельма Фридриха Гегеля!


1.7. Построим более эффективную конвейерную ленту

Математические понятия: лента Мебиуса, топология

В математике маленькие вещи могут иметь большие последствия. Возьмите, например, полоску бумаги любой длины. Держите концы этой полоски в разных руках и поверните ее на 180 градусов. Теперь приклейте концы друг к другу. Вы только что создали настоящий математический парадокс из простых канцтоваров. Объект, который вы сделали, называется лентой Мебиуса.



Ленты Мебиуса – особое явление в математике, так как они неориентируемые, то есть имеют лишь одну сторону. Это может прозвучать как что-то невообразимое, но вы сами можете доказать ее односторонность. Возьмите карандаш и начинайте чертить линию в любой точке ленты. (Убедитесь, что вы чертите линию, параллельную ленте, чтобы карандаш не сошел с бумаги.) В конце концов карандаш вернется на начальную позицию. А что особенно важно, так это то, что черта остается на всей поверхности ленты. Если бы у ленты было две стороны – внешняя и внутренняя, – то карандашная линия была бы только на одной из сторон, вторая осталась бы нетронутой.

Этот странный односторонний объект похож на экзотику – он таковым и является, – но ленты Мебиуса время от времени встречаются и вне книг по математике и классных досок. Например, в 1957 году компания B.F. Goodrich создала конвейерную ленту Мебиуса. Такой способ позволял ленточному конвейеру работать дольше, так как вся поверхность ленты изнашивалась равномерно. Те же цели преследовали и некоторые магнитофонные ленты и ленты для пишущих машинок: эта форма позволяла использовать максимум поверхности лент, что повышало их практичность. Ленты Мебиуса также есть и в мире электроники – а именно в некоторых резисторах (что позволяло им противостоять потоку электроэнергии) – и в биологии: некоторые конфигурации молекул имеют структуру ленты Мебиуса.