Математика в занимательных рассказах - страница 6



– Ну, подсчитай же, наконец, сколько это составит томов, – сказала хозяйка. – Чистый листок бумаги, я вижу, скучает в твоих пальцах.

– Расчет так прост, что его можно выполнить и в уме. Как составляем мы нашу библиотеку? Помещаем сначала однократно каждую из сотни наших литер. Затем присоединяем к каждой из них каждую из ста литер, так что получаем сотню сотен групп из двух букв. Присоединив в третий раз каждую литеру, получаем 100 × 100 × 100 групп из трех знаков, и т. д. А так как мы должны заполнить миллион мест в томе, то будем иметь такое число томов, какое получится, если взять число 100 множителем миллион раз. Но 100 = = 10 × 10; поэтому составится то же, что и от произведения двух миллионов десятков. Это, проще говоря, единица с двумя миллионами нулей. Записываю результат так: десять в двухмиллионной степени —

10>2 000 000.

Профессор поднял руку с листком бумаги[4].

– Да, вы, математики, умеете-таки упрощать свои записи, – сказала хозяйка. – Но напиши-ка это число полностью.

– О, лучше и не начинать; пришлось бы писать день и ночь две недели подряд, без передышки.

Если бы его напечатать, оно заняло бы в длину четыре километра.

– Уф! – изумилась племянница. – Как же оно выговаривается?

– Для таких чисел и названий нет. Никакими средствами невозможно сделать его хоть сколько-нибудь наглядным, – настолько это множество огромно, хотя и безусловно конечно. Все, что мы могли бы назвать из области невообразимо больших чисел, исчезающе мало рядом с этим числовым чудовищем.

– А если бы мы выразили его в триллионах? – спросил Буркель.

– Триллион – число внушительное: единица с 18 нулями. Но если ты разделишь на него число наших томов, то от двух миллионов нулей отпадает 18. Останется единица с 1 999 982 нулями, – число столь же непостижимое, как и первое. Впрочем… – профессор сделал на листке бумаги какие-то выкладки.

– Я была права: без письменного вычисления не обойдется, – заметила его жена.

– Оно уже кончено. Могу теперь иллюстрировать наше число. Допустим, что каждый том имеет в толщину 2 сантиметра и все тома расставлены в один ряд. Какой длины, думаете вы, будет этот ряд?

Он с торжеством взирал на молчащих собеседников. Последовало неожиданное заявление племянницы:

– Я знаю, какую длину займет ряд. Сказать?

– Конечно.

– Вдвое больше сантиметров, чем томов.

– Браво, браво! – подхватили кругом. – Точно и определенно.

– Да, – сказал профессор, – но попытаемся представить это наглядно. Вы знаете, что свет пробегает в секунду 300 000 километров, т. е. в год 10 биллионов километров, или триллион сантиметров. Если, значит, библиотекарь будет мчаться вдоль книжного ряда с быстротой света, то за два года он успеет миновать всего только один триллион томов. А чтобы обозреть таким манером всю библиотеку, понадобилось бы лет дважды единица с 1 999 982 нулями. Вы видите, что даже число лет, необходимое для обозрения библиотеки, столь же трудно себе представить, как и число самих томов. Здесь яснее всего сказывается полная бесполезность всяких попыток наглядно представить себе это число, хотя повторяю, оно и конечно.

Профессор хотел было уже отложить листок, когда Буркель сказал:

– Если собеседницы наши не запротестуют, я позволю себе задать еще только один вопрос. Мне кажется, что для придуманной тобою библиотеки не хватит места в целом мире.

– Это мы сейчас узнаем, – сказал профессор и снова взялся за карандаш. Сделав выкладки, он объявил: