Основы статистической обработки педагогической информации - страница 28



)

ggplot(data = задержки, mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)



Неудивительно, что на частых рейсах задержек практически не наблюдается, а в основном задерживаются те борта, чьих рейсов мало. Что характерно, и в принципе соответствует статистическому закону больших чисел: всякий раз, когда ищется среднее значение (или другая сводка) в сравнении с размером группы, приходят к выводу, что вариативность вычисленного значения уменьшается по мере увеличения объема выборки.

Именно поэтому, когда решаете аналогичные задачи, полезно отфильтровывать группы с наименьшим количеством наблюдений, тогда можно будет увидеть общие закономерности и уменьшить выбросы значений на малых группах. На примере следующего кода будет демонстрирован удобный шаблон интеграции ggplot2 с каналами в dplyr. Немного странным может показаться смешение стилей %>% и +, дело привычки, со временем это станет естественным. Отфильтруем на предыдущем графике экспериментальные самолёты с малым количеством вылетов, не превышающим 33:

задержки %>% filter(количество_выполненных_рейсов > 33) %>%

ggplot(mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)



Полезным сочетанием клавиш RStudio является Ctrl + Shift + P, для повторной отправки ранее отправленного фрагмента из редактора в консоль. Это очень удобно, когда экспериментируете с граничным значением 33 в приведенном выше примере: отправляете весь блок в консоль нажатием Ctrl + Enter, а затем изменяете значение границ фильтрации на новое и нажимаете Ctrl + Shift + P, чтобы повторно отправить весь блок в консоль.

Есть еще одна хрестоматийная иллюстрация к применению изложенного метода. Рассмотрим среднюю эффективность бейсбольных игроков относительно количества подач, когда они находятся на базе. Воспользуемся данными из пакета Lahman для вычисления среднего показателя эффективности (количество попаданий / количество попыток) каждого ведущего игрока бейсбольной лиги.

Историческая справка. Не сказать чтобы бейсбол был нашей национальной забавой, но многие в России знают «сколько пинчеров на базе», и именно россиянин, уроженец Нижнего Тагила, Виктор Константинович Старухин стал первым питчером, кто одержал 300 побед в японской бейсбольной лиге, являясь одним из лучших бейсболистов мира в 20 веке.

Когда строится график визуализирующий уровень мастерства игроков, измеряется среднее значение эффективных попаданий по мячу по отношению к общему количеству предпринятых попыток, возникает две статистические предпосылки:

1. Как было в примере с самолётами, вариативность показателей уменьшается при увеличении количества наблюдений.

2. Существует положительная корреляция между результативностью и элементарно предоставляемой возможностью бить по мячу. Дело в том, что команды контролируют свой состав, поэтому очевидно, что на поле выходят только лучшие игроки из лучших.

Предварительно преобразуем сведения об ударах игроков в табличную форму, так они легче воспринимаются:

удары <– as_tibble(Lahman::Batting)

эффективность <– удары %>%

group_by(playerID) %>%

summarise(

результативность = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

возможность = sum(AB, na.rm = TRUE)

)

эффективность %>%

filter(возможность > 100) %>%

ggplot(mapping = aes(x = возможность, y = результативность)) +