Основы теории искусственных нейронных сетей - страница 5
Если µ = 0, то вход считается необученным – в этом случае импульсация на этот вход не оказывает никакого влияния на состояние нейрона. Максимально обученный вход (µ = 1) работает аналогично входу возбуждения с весом W, пока значение µ снова не изменится (уменьшится).
Обучение, переобучение, разобучение – механизмы, регулирующие значение µ и, как следствие, работу входов памяти нейрона.
Разобучение – уменьшение µ, происходит в тех случаях, когда сигнал, поступивший на вход памяти, не был подкреплён последующим сигналом на вход возбуждения, или не сопровождался регулирующей импульсацией (при этом T ≥T>0). В этой ситуации значение µ уменьшится на ∆µ-.
Таким образом, вход памяти отличается от входа возбуждения умением менять значимость своего вклада в общий потенциал в зависимости от характера импульсации.
В результате обзора существующих моделей становится видно, что существует достаточное количество нейронов, описывающих естественный нейрон очень упрощенно. Они нашли свое применение в области распознавания образов, для решения задач классификации и т. д. Также существует множество моделей, которые при описании нейрона ставят своей целью количественное описание поведения нейрона. Однако до сих пор остается непонятным, приводит ли усложнение нейрона, попытки отображения им все новых свойств естественного нейрона, к существенному прогрессу и улучшению результатов решаемых нейронами задач.
Нейронные ансамбли
В нервной системе, особенно в ее периферических отделах, существуют устойчивые, генетически предопределенные конфигурации нервных клеток – нейронные ансамбли или ганглии, функции которых обычно ограничены и предопределены спецификой периферического отдела в организме.
В практике нейронного моделирования в ряде случаев также оказывается полезным рассматривать ограниченную совокупность искусственных нейронов (ИН), как искусственный нейронный ансамбль (ИНА), который имеет жесткую не подлежащую переобучению структуру, определяемую задачей обработки информации.
Понятие ИНА позволяет расширить ограниченный набор вычислительных возможностей одиночного ИН. Переход от одиночного ИН к ИНА можно рассматривать как второй уровень нейронного моделирования.
С точки зрения решения прикладных задач, использование необучаемой «нейронной логики» на основе ИНА вместо традиционной компьютерной логики эквивалентен замене одного функционально полного базиса другим функционально полным базисом. Такая замена не порождает новых уровней функциональности и методов решения задач, и может быть оправдана лишь более эффективной реализацией вычислителя.
В базисе нейронной логики специалистами по нейронному моделированию были предложены решения самых разнообразных задач, которые по эффективности реализации могли конкурировать с вычислителями на обычной логике. Например, на основе нейронов строились элементы электронных вычислительных машин, реализующие различные вычислительные функции.
Кроме вычислительных ИНА, копирующих элементы ЭВМ, нейронные сети могут реализовать элементы, реализующие функции нейроматематики: элементы для выполнения математических операций, например таких, как
– сложение, вычитание, умножение, деление различных чисел,
– преобразования чисел из одной системы счисления в другую,
– перекодировки текста,
– матричных операций,
– генерации случайных чисел,
– построения гистограмм.