Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - страница 6



. Следующим по ценности методом верификации является экспертный пересмотр: слепой анализ исследований врачами-экспертами с достижением заданного уровня согласованности их решений (подробно описан в подпараграфе 3.3.2 «Разметка данных»). Следующие две группы методов являются наиболее достоверными, и их можно условно назвать «подтвержденный диагноз»: исследование той же модальности в динамике, исследование другой модальности, лабораторное исследование, которые в совокупности с остальными данными медицинской карты дают клинический диагноз. Стоит отметить, что для верификации каждой патологии существует свой метод «золотого стандарта», который позволяет подтвердить диагноз.

На рисунке 2 представлена классификация видов разметки на примере рака молочной железы (РМЖ) с учетом ценности разметки.


Рисунок 2 – Классификация видов разметки в медицинской диагностике по диагностической ценности


В наиболее общем виде разметка данных может проводиться на основании:

А. Информации об имеющейся целевой патологической находке, представленной на изображении в виде пиксельной маски (оконтуренной области изображения). Дополнительно может содержаться в метаданных (аннотации).

B. Информации об имеющейся целевой патологической находке, представленной в виде координат. Может помещаться в метаданных (в аннотации, в сводном табличном сопроводительном файле) и/или присутствовать на изображении в виде отметки области расположения простой геометрической фигурой.

С. Информации о наличии/отсутствии целевой патологической находки, содержащейся в метаданных (то есть в аннотации – сопроводительных файлах) и отсутствующей на изображении.

Классификация A, B, C для уровня 3 (обнаружение находки) предполагает вовлечение врачей-экспертов с целью поиска (наличие/отсутствие – С), локализации (В) и сегментации (А)13.

В случае локализации врачу необходимо обозначить координаты области интереса простой геометрической фигурой, в случае сегментации – обвести контур области интереса, т.е. создать пиксельную маску. Для уровня 2 (классификация находки) необходимо классифицировать находку, используя общепринятые шкалы (например, BI-RADS14, ASPECTS15). Для уровня 1 (подтвержденный диагноз) необходимы данные медицинской карты, позволяющие поставить диагноз.

Классификация отображает взаимосвязь:

– объемов и качества исходных данных;

– трудозатрат на подготовку;

– методик разметки и работы с первичными данными;

– диагностической ценности.

Стоит отметить, что данная классификация применима в случае поиска патологических находок. Для некоторых НД, например, при задаче сегментации анатомической структуры, подтверждение диагноза неприменимо, соответственно данную классификацию использовать нельзя.

Также разметку данных можно разделить на проспективную и ретроспективную, т.е. по времени их получения.

Проспективная разметка аналогично ретроспективной разметке представляет собой сбор элементов в соответствии с поставленной целью, при этом обязательным условием является проведение дополнительных манипуляций с элементами (например, постановка метки начала и окончания события, меток обнаружения признаков, обозначений патологий и т.п.). Этот вид разметки проводят с участием обученного медицинского персонала (зачастую квалифицированного врача в субспециализации размечаемого набора данных) путем ручного аннотирования содержания данных или их частей.