Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной - страница 16



Парадокс «огненной стены»

Если черная дыра в конце концов истончается и превращается в ничто, что тогда происходит с веществом, которое падает на нее? На фундаментальном уровне материя и энергия несут информацию, а квантовая механика утверждает, что информация не может быть уничтожена. Возможно, закодированная информация ускользает наружу вместе с излучением Хокинга, но эта идея упирается в другую проблему: это приводит к тому, что черную дыру должна окружать «огненная стена» из пылающих частиц с большой энергией, что опять-таки противоречит общей теории относительности.

Парадокс «огненной стены» (файервол) до сих пор является предметом жарких споров. Одним из перспективных и заманчивых предположений по поводу того, как можно разрешить парадокс, является следующее: гладкая ткань эйнштейновского пространства-времени возникает из частиц внутри и вне горизонта событий, квантово-механически связанных друг с другом через структуры, известные как кротовые норы. В августе 2015 года Хокинг выдвинул еще одну идею, согласно которой информация никогда на самом деле не поглощается черной дырой. Она продолжает упрямо присутствовать на горизонте событий черной дыры в искаженной форме, трудно поддающейся расшифровке. Через месяц после этого Нобелевский лауреат Герард’т Хоофт (род. 1946) из Утрехтского университета в Нидерландах предположил, что при падении материи и энергии внутрь горизонта событий содержащаяся в них информация просто отскакивает назад.

Исследуя невидимое

Измерение параметров черных дыр вызывает большие затруднения. По определению черная дыра не может излучать свет, поэтому мы не можем просто наблюдать ее в телескоп. Но мы можем видеть ее гравитационные эффекты.

В 1971 году было объявлено, что объект под названием Лебедь X-1 является черной дырой звездной массы (возникшей в результате гравитационного коллапса массивной звезды), так как этот объект оказывал сильное гравитационное влияние на соседнюю звезду. Три года спустя последовало открытие Стрельца A*, сверхмассивной черной дыры в центре нашей галактики. Орбиты окружающих ее звезд свидетельствуют о том, что там находится нечто очень массивное, что-то, чья масса в четыре миллиона раз превосходит массу Солнца.

Существуют и другие способы обнаружения черных дыр. Хотя горизонт событий не может излучать свет, многие черные дыры окружены аккреционными дисками из газа, падающего по спирали на черную дыру. Эти горячие диски излучают в широком диапазоне частот, от радиоволн до видимого и рентгеновского диапазона. А если черная дыра вращается вокруг своей оси, она может испускать огромные струи вещества.

Вскоре мы сумеем подобраться гораздо ближе к тому, чтобы реально увидеть черную дыру. Проект под названием «Телескоп горизонта событий» имеет своей целью сделать снимки Стрельца A* и других сверхмассивных черных дыр (см. интервью о фотографировании черных дыр ниже). И мы собираемся многое узнать о черных дырах с помощью гравитационных волн (см. главу 4). Возможно, этого окажется достаточно, чтобы узнать, что реально происходит на горизонте событий.

Некоторые ученые вообще избегали исследования этих проблем, по-прежнему считая, вслед за Эддингтоном и Эйнштейном, что черных дыр не существует. В 2014 году Лаура Мерсини-Хоутон из Университета Северной Каролины (Чапел Хилл) выступила с заявлением, что массивные звезды не могут коллапсировать в черные дыры, – излучение Хокинга во время коллапса просто не дает звезде превратиться в черную дыру. Следовательно, горизонта событий и сингулярностей не существует.