Психология – наука будущего. Материалы VI Международной конференции молодых ученых. 19-20 ноября 2015 г., Москва - страница 24
В вызванном потенциале, возникающем в ответ на подсветку целевого символа, присутствуют и другие компоненты помимо P300, часть из которых (например, компонент N1) также помогает определению целевого элемента из набора предъявленных. При этом эти дополнительные компоненты зависят уже не только от того, на каком элементе сконцентрирован оператор, но и от направления его взгляда (Brunner et al., 2010). Если направление взгляда оператора совпадает с целевым символом, эти дополнительные компоненты, как правило, более ранние, чем волна P300, оказываются более ярко выражены и вносят больший вклад в детекцию целевого стимула, чем в случае, когда направление взгляда оператора не совпадает с целевым стимулом. При этом если по отношению к когнитивному потенциалу P300 известна определенная взаимосвязь его параметров (амплитуда, латентность) с характером выполняемой человеком задачи, то по отношению к более ранним компонентам вызванного потенциала таких данных на сегодняшний момент существенно меньше. Характеристики ранних компонентов недостаточно хорошо исследованы, характер связей этих характеристик с сопутствующими изменениями в процессах восприятия изучены относительно слабо (Басюл, Каплан, 2014). В связи с этим весьма актуальными являются следующие вопросы: как связаны особенности зрительного восприятия с электрической активностью мозга в ИМК на волне P300? Как зависят эти особенности от характеристик стимульной среды и типа выполняемой человеком задачи, как они изменяются при оперантном обусловливании? Возможно ли, и если возможно, то как, использовать специфические характеристики процесса зрительного восприятия в условиях ИМК на волне P300 для оптимизации данного ИМК, ускорения обучения работе и формированию более устойчивого навыка?
Научная новизна предлагаемого исследования связана с получением новых данных об особенностях динамики зрительного восприятия, его опосредующих факторах в среде ИМК на волне P300, динамике процессов зрительного восприятия при оперантном обусловливании и формировании навыка работы с ИМК. Методологическая новизна заключается в объединении психофизиологической парадигмы интерфейса мозг-компьютер и методик регистрации направленности взора человека (Барабанщиков, Жегалло, 2013, 2014) как подхода к изучению процессов восприятия (Барабанщиков, 1997).
Методика. Для решения поставленных задач разработана методика и программно-аппаратный комплекс синхронной регистрации ЭЭГ и направленности взора человека в процессе работы с ИМК на волне Р300. Регистрация ЭЭГ осуществляется при помощи 8-канального электроэнцефалографа производства компании «МОВИКОМ», частота оцифровки сигнала – 500 Гц. Регистрация направленности взора осуществляется при помощи установки SMIHiSpeed, обеспечивающей скорость видеорегистрации направленности взора до 1250 кадров в секунду при пространственном разрешении 0,25–0,5°. Программной платформа послужила среда Python 2.5 с набором модулей для обеспечений высокоточного предъявления стимулов на экране монитора и скоростной онлайн-обработки ЭЭГ-данных для обеспечения надлежащей скорости работы ИМК. Особое внимание было уделено стабильности временных характеристик предъявляемых стимулов, высокой степени синхронизации регистрируемых потоков данных (ЭЭГ и траектории движений глаз), а также формированию логов работы стимуляционного модуля программно-аппаратного комплекса, позволяющих полностью восстановить стимуляционную среду, с которой было предложено работать испытуемому. Последний пункт представляет особую важность для детального анализа данных офлайн.