Рассуждения об основах физики - страница 2



. Наблюдатель, находящийся у этих часов, ставит время: t = x/c в момент получения светового импульса (c – скорость света).

Однако показания реальных часов включают в себя и слагаемое переноса часов, равное здесь также x/c. Поэтому на часах следует ставить время равное 2x/c. Синхронизированные таким образом, часы могут двигаться вдоль оси OX, и при этом слагаемое переноса будет меняться. Поэтому для правильного отсчета времени, кроме времени t, всегда необходимо знать так же и координаты часов в момент измерения. И в этом заключается пространственно-временная связь.

Заметим еще, что предложенная здесь синхронизация часов не вполне корректна. Она основана на нашем твердом убеждении, что скорость света в одном направлении равняется средней скорости света на пути «туда и обратно». Но как это утверждение проверить экспериментально? Чтобы его проверить, необходимо иметь разведенные на расстояние s часы, синхронизированные ещё до начала опыта. И тогда вышеприведённый способ синхронизации уже не годится. В этом опыте нам придется двое часов расположить прежде в начале координат и запустить их одним начальным (нулевым) импульсом. После этого одни из часов сдвинуть по координате на расстояние s (не вмешиваясь в их работу). При этом в часах к истинному времени автоматически будет добавляться слагаемое переноса, которое при измерениях следует вычитать из показаний часов.

1. 6. Одновременные события



Рис. 1. 3


Одновременность событий поясняется на рис. 1. 3. Здесь в координатах XOt изображена зависимость от координаты слагаемого переноса x/V>e. Это прямая OC, наклонённая к оси OX под некоторым углом α, для которого tgα = 1/V>e. Назовем прямую OC прямой синхронизации. Прямая AB, параллельная прямой синхронизации замечательна тем, что события расположенные на ней одновременны, так как для точек этой прямой истинное время одинаково (например, t>A = t>B). Пусть теперь часы двигаются вместе с подвижной системой X>IO>It>I вдоль оси OX. При этом прямая синхронизации (теперь уже O>IC>I) будет сдвигаться параллельно прямой OC, а значит и параллельно прямой AB, а потому t>I>A = t>I>B. Из этого следует, что если в одной системе координат события A и B одновременны, то они будут одновременны и в другой системе координат.

Ввиду важности понятия одновременности остановимся на этом подробнее. Рассмотрим высказывание: пусть в момент времени t координаты точки равны x,y,z. В мире математики это высказывание есть не что иное, как определение неявной функции четырех переменных в виде F(x,y,z,t) = 0. Однако в мире физики это высказывание можно трактовать как угодно, если не сделать дополнительного соглашения (между физиками и математиками). Каково должно быть это соглашение? Оно должно быть таково, чтобы высказывания физика и математика относительно реального мира были тождественны. Это следующее соглашение: отметки на часах о времени события, а также отметки на координатных осях о положении точки должны делаться за времяравное нулю (далее кратко, нуль – соглашение). Это соглашение необходимо и полезно, потому что теперь математический аппарат приобретает физический смысл. Это соглашение в неявной форме всегда присутствует в «правильных» формулах физики.

Однако сторонник теории относительности полагает, что отметки на осях координат можно делать за время равное нулю, а отметки на часах о времени события нельзя сделать за время равное нулю. Как он это узнал? Ведь материальная точка может находиться на очень большом удалении не только от часов, но и от осей координат. Эта непоследовательность (а точнее, отказ от нуль – соглашения) и привела к «релятивистскому» понятию одновременности, когда два одновременных события в одной системе координат становятся уже неодновременными в другой системе координат.