Риск-менеджмент. Учебное пособие - страница 6



1. Для нормального распределения s – хорошая мера разброса, а для прочих – плохая, риск оценивается неадекватно, с грубым приближением.

2. Эта мера разброса показывает отклонения в обе стороны, а нас интересует риск, то есть мера отклонения только в неблагоприятную сторону.




Рис. 1.


Нарисуем график, где на горизонтальной оси отложим стандартное отклонение s, на вертикальной – доходность r. При условии сделанного предположения для инвестора достаточно знания этих двух величин. Это значит, что портфель можно изобразить точкой, а инвестиционное решение должно приниматься на основании анализа допустимого множества портфелей и предпочтений инвестора.

В теории Марковица обычно считается, что инвестор, во-первых, обладает свойством ненасыщения, то есть таким свойством, что чем больше доходность инвестиционного портфеля, тем ему лучше при прочих равных условиях. Во-вторых, инвестор обладает свойством избегания риска, свойством несклонности к риску.

Бывает три вида инвесторов: склонных к риску, избегающих риска и нейтральных к риску. Рассмотрим честную игру. Бросая монетку, с вероятностью ½ мы либо получаем, либо платим одну денежную единицу. Математическое ожидание выигрыша равно нулю (½*(+1)+½*(-1)=0). Для инвестора, несклонного к риску, моральное удовлетворение от выигрыша в одну единицу будет меньше, чем разочарование от проигрыша. Хотя он знает, что в среднем получается ноль, он откажется от игры. Склонный к риску инвестор рассуждает ровно наоборот. Нейтральный к риску скажет, что ему все равно, играть, или не играть.

Для инвесторов, несклонных к риску и обладающим свойством ненасыщения, рассматриваемых в теории Марковица, кривые безразличия выглядят следующим образом: положительно наклоненные и выпуклые вниз.

Кривая безразличия – это множество портфелей, обладающих свойствами доходности и риска, полностью описываемыми величинами r и s, одинаковых для инвестора с точки зрения его предпочтения – инвестиционного выбора. Кривая безразличия положительно наклонена, так как считается, что больший риск должен компенсироваться большей доходностью. Аналогичный подход используется в теории полезности.

Кривые безразличия не пересекаются. Между любыми двумя можно нарисовать третью. Для инвестора лучше, когда наш портфель оказывается левее и выше на приведенном рисунке, потому что при таком смещении либо увеличивается доходность, либо уменьшается риск, либо то и другое одновременно; поэтому кривая безразличия, расположенная левее и выше, предпочтительнее для инвестора.

Пусть:

N – количество активов,

x>1 , …, x>N –доли активов в портфеле,



Тогда доходность портфеля, r>p, исходя из определения доходности, есть



Отсюда, очевидно, что ожидаемая доходность портфеля определяется формулой



Соответственно, для s получается, что риск портфеля есть



– коэффициент корреляции между доходностями i-ой и j-ой ценными бумагами.

Таким образом, риск>5 портфеля s>p>2 будет отличаться от средневзвешенной суммы рисков каждой из входящих в него ценных бумаг на слагаемое



,

содержащее коэффициенты корреляции. Коэффициенты корреляции могут быть как положительны, так и отрицательны; а следовательно, знак числа указанного выше может быть любой.

Таким образом, объединение бумаг в портфель может значительно изменить (уменьшить или увеличить) риск по сравнению со взвешенной суммой рисков бумаг, входящих в портфель (