Роман с Data Science. Как монетизировать большие данные - страница 8



Далее Ди Джей указывает на принцип «Если ты не можешь измерить, ты не можешь это исправить» («if you can’t measure it, you can’t fix it»), который объединяет самые сильные организации, эффективно использующие свои данные. Вот рекомендации Патила, которые следуют из этого принципа:

• Собирайте все данные, какие только возможно. Вне зависимости от того, строите ли вы просто отчетную систему или продукт.

• Продумывайте заранее и делайте вовремя измерение метрик проектов.

• Позвольте как можно большему количеству сотрудников знакомиться с данными. Множество глаз поможет быстрее выявить очевидную проблему.

• Стимулируйте интерес сотрудников задавать вопросы относительно данных и искать на них ответы.

Эти мысли я еще озвучу в главе про данные. А теперь самое время поговорить о том, что мы получаем на выходе анализа данных.

Артефакты анализа данных

Здесь и далее под артефактами я буду понимать осязаемый результат, физический или виртуальный объект.


Рис. 2.1. Артефакты аналитики


Их можно разделить на три вида (рис. 2.1):

• артефакты бизнес-анализа данных (business intelligence);

• артефакты машинного обучения (machine learning);

• артефакты инженерии данных (data engineering).

Поговорим о них подробнее.

Бизнес-анализ данных

Бизнес-анализ данных (Business Intelligence, BI) – термин уже устоявшийся. Вот какое определение дает Википедия:

«Business Intelligence – это обозначение компьютерных методов и инструментов для организаций, обеспечивающих перевод транзакционной деловой информации в человекочитаемую форму, пригодную для бизнес-анализа, а также средства для работы с такой обработанной информацией».

Под бизнес-анализом я подразумеваю объединение контекста бизнеса и данных, когда становится возможным бизнесу задавать вопросы к данным и искать ответы Первыми артефактами являются так называемые инсайты и гипотезы, вторыми – отчеты или дашборды, метрики и ключевые показатели (Key Performance Indicator). Поговорим подробнее об инсайтах и гипотезах.

Гипотезы и инсайты

Инсайт (insight) в переводе с английского – понимание причин. Именно за этим обращаются к аналитикам. В поиске инсайтов помогают аналитика и статистика:

• Цель аналитики заключается [10] в помощи формулирования гипотезы.

• Цель статистики [10] в том, чтобы эту гипотезу проверить и подтвердить.

Это требует пояснений. В бизнесе, да и в жизни тоже, мы ищем причину проблемы, задавая вопрос «почему?». Не зная причины, мы не можем принять решение. В игру вступает аналитика – мы формулируем список возможных причин: это и есть гипотезы. Чтобы это сделать, нужно задать несколько вопросов:

• Не происходило ли что-нибудь подобное раньше? Если да, то какие тому были причины? Тогда у нас будет самая первая и самая вероятная гипотеза.

• Обращаемся к бизнес-контексту: не происходило ли каких-либо неординарных событий? Часто как раз параллельные события влияют на возникновение проблемы. Еще плюс пара гипотез.

• Описательный анализ данных (exploratory data analysis): смотрим данные в аналитической системе (например, кубах OLAP), не видно ли каких-либо аномалий на глаз? Например, какие-либо распределения изменились во времени (типы клиентов, структура продаж и т. д.). Если что-то показалось подозрительным – дополняем список гипотез.

• Использование более сложных методов поиска аномалий или изменений, например, как описано здесь [11].