SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры - страница 3



1. Задать начальные значения для параметров α, β, γ, δ, ε.

2. Рассмотреть возможность использования нелинейных моделей или методов машинного обучения, которые могут учитывать сложные взаимодействия и взаимосвязи между параметрами α, β, γ, δ, ε. Например, можно использовать методы нелинейной регрессии, нейронные сети или другие нелинейные модели.

3. Использовать выбранный метод для обучения модели на имеющихся данных и построения предсказательной модели SSWI. Модель должна учитывать нелинейные зависимости между входными параметрами и SSWI.

4. Учитывать взаимосвязи между параметрами α, β, γ, δ, ε, например, используя методы факторного анализа или структурного моделирования. Это поможет определить, какие параметры влияют друг на друга и на SSWI.

5. Оценить полученную модель с помощью проверки на тестовых данных или использования других критериев оценки качества моделей.

6. Повторить шаги 1—5 несколько раз, чтобы найти оптимальные значения для параметров α, β, γ, δ, ε, которые максимизируют точность модели и учитывают нелинейные взаимодействия и взаимосвязи.

7. Получить окончательную модель, которая предсказывает SSWI на основе значений параметров α, β, γ, δ, ε, учитывая нелинейности и взаимосвязи между ними.


Использование этого алгоритма позволит ученым получить более точные и комплексные представления о взаимодействиях между частицами в ядрах атомов, учитывая нелинейности и взаимосвязи между параметрами.

Код для обучения модели с использованием нелинейных методов машинного обучения будет зависеть от выбранной модели. Однако, я могу предоставить пример обучения модели с использованием метода RandomForestRegressor из библиотеки scikit-learn

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split


# Шаг 1: Задание начальных значений параметров α, β, γ, δ, ε

alpha = 1.0

beta = 1.0

gamma = 1.0

delta = 1.0

epsilon = 1.0


# Шаги 2 и 3: Обучение модели RandomForestRegressor

X = [[…]] # Входные параметры

y = […] # Целевая переменная SSWI


# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2, random_state=42)


# Создание и обучение модели RandomForestRegressor

model = RandomForestRegressor (n_estimators=100, random_state=42)

model.fit (X_train, y_train)


# Шаги 4 и 5: Оценка модели

y_train_pred = model.predict (X_train)

train_rmse = mean_squared_error (y_train, y_train_pred, squared=False)


y_test_pred = model.predict (X_test)

test_rmse = mean_squared_error (y_test, y_test_pred, squared=False)


print (f’Train RMSE: {train_rmse}»)

print(f'Test RMSE: {test_rmse}')


# Шаг 6: Поиск оптимальных значений параметров α, β, γ, δ, ε


# Получение важности признаков, если требуется анализ взаимосвязей

feature_importances = model. feature_importances_


# Шаг 7: Использование окончательной модели для предсказания SSWI

X_new = [[…]]  # Новые входные параметры для предсказания

predicted_sswi = model.predict (X_new)


Обратите внимание, что код может потребовать подготовки и предварительной обработки данных, а также настройки параметров модели в соответствии с требованиями вашей конкретной задачи.

Алгоритм оценки доверительного интервала для SSWI с использованием bootstrap или перестановочных тестов

Алгоритм оценки доверительного интервала для SSWI:

– Собрать набор данных, включающий значения параметров α, β, γ, δ, ε и соответствующие значения SSWI.