Теоретические основы инвестиций в акции, облигации и стандартные опционы - страница 8



В литературе встречается термин «хорошо диверсифицированный портфель» – портфель, в котором предельно сокращён максимальный объём инвестиций в один рискованный актив. Подразумевается, что владелец такого портфеля в случае наступления негативного события психологически готов к относительно небольшим и прогнозируемым потерям. Считается, что хорошо диверсифицированный портфель должен содержать не менее 20 видов активов. При таком количестве видов активов в портфеле в случае дефолта одного из эмитентов инвестор не теряет шансы на получение дохода.

Во–вторых, диверсификация инвестиций приводит к уменьшению СКО стоимости и доходности портфеля и, как следствие, к снижению риска отрицательной доходности портфеля. Согласно портфельной теории Г.Марковица инвестор стремится оптимизировать структуру портфеля таким образом, чтобы МО доходности было максимальным, а СКО доходности – минимальным. Такой портфель должен содержать около 30–40 видов ценных бумаг компаний, действующих в различных отраслях [5, 6].

Определим МО и СКО доходности портфеля активов, используя при этом известные положения теории вероятностей – теоремы о числовых характеристиках функций случайных величин [2].

Математическое ожидание доходности портфеля активов. В соответствии с соотношением (1.3) для оценки МО доходности портфеля, содержащего видов активов, необходимо определить цену покупки портфеля, МО капитального дохода и дивидендный доход портфеля.

При наличии в портфеле нескольких видов активов цена покупки портфеля составляет


где – количество активов iго вида (эмитента) в портфеле; – цена покупки одного актива iго вида; – объём инвестирования в актив iго вида.

Если МО капитального дохода актива iго вида равно , то МО капитального дохода совокупности активов одного вида составляет .

Математическое ожидание капитального дохода портфеля, который содержит видов ценных бумаг, равно


Тогда соотношение для МО капитальной доходности портфеля можно преобразовать к виду


где – относительный объём инвестирования в один актив i–го вида (доля актива i–го вида в стоимости портфеля); – математическое ожидание капитальной доходности актива i–го вида.

Необходимо отметить, что в полученном соотношении:

математическое ожидание капитальной доходности портфеля является не чем иным как средневзвешенной капитальной доходностью активов, входящих в портфель;


и в частном случае, когда объёмы инвестирования в активы одинаковы, .

Аналогичным образом определим дивидендную доходность портфеля активов


где – дивидендный доход актива i–го вида; – дивидендная доходность актива i–го вида.

Математическое ожидание доходности портфеля активов в целом составляет


где – математическое ожидание доходности актива i–го вида.

В литературе по теории инвестиций широко используется понятие средняя доходность ценных бумаг по видам, отраслям, за определённый промежуток времени и т.п. (см. табл. 1.2 и табл. 17.2 [1], табл. 6.5 [5], табл. 2.4 [6], табл. 28.1 и табл. 30.1 [7]). При этом под средней доходностью понимается среднеарифметическая доходность. Например, в табл. 1.2 [1] приведены данные за 68–летний период годовых доходностей трёх видов активов – акций, облигаций и казначейских векселей. На основе этих данных с использованием известной формулы рассчитаны среднегодовые (среднеарифметические) доходности каждого вида актива. То есть вес годовых доходностей безосновательно принят одинаковым . По этой причине полученные в табл. 1.2 [1] результаты расчётов среднегодовых доходностей активов и соответствующие выводы не могут заслуживать доверия.