Токсичность автомобиля - страница 5
При равномерной движении исходным уравнением
является тяговый или мощностной баланс (2.1).
2.3.Математическая модель автомобиля.
Данная математическая модель автомобиля построена на известных классических понятиях этой области и пред-тавляет из себя в целом аналогичную схему. Основной проблемой в этом случае является возможность анализа тягово-скорстных свойств и т. п. на базе разработанной модели с учетом принятого подхода. Поэтому можно рассматривать уже известные подходы как базовые в двух координатных сетках: одна базовая-начальная система ко-ординат, другая локальная-совмещенная с автомобилем, или точнее с его центром масс. Случай с двумя координатными сетками рассматривается достаточно редко, поэтому является новым элементом и в данном подходе может дать выигрыш в повышении точности расчетов с использованием соответствующих математических методов.
Таким образом, движение автомобиля сводится к криволинейному движению материальной точки с некоторыми степенями свободы и упрощениями, не влияющими на точность результатов. Поэтому рассматривается не общий случай криволинейного движения на базе уравнения Лагранжа второго рода, а данная система с двумя координатным сетками, причем локальная система перемещается с центром масс автомобиля строго по курсу автомобиля, т.е. существует случай курсового движения. Таким образом, движение в локальной системе координат-
плоское двумерное. Это упрощение позволяет добиться существенного выигрыша в плане математического эксперимента.
В данной модели существует несколько степеней свободы: движение вперед-назад, возвратнопоступательного типа; вверх-вниз – в пределах определенных углов наклона. Кроме того, существует возможность присоединения элементов расчета, позволяющих в той или иной степени оценить углы подьема и спуска, а также углы продольного крена, и движение «влево-вправо» самой локальной системы координат. Таким образом для данной математической модели существует 8 основных степеней
свободы, некоторые из которых имеют ограничения и упрощения. Не учитываются, например, такие факторы, как боковые крены, боковые углы рыскания, связанные в частности с уводом шин, но сама модель дает возможность в перспективе подключать соответствующие известные слож-ные методики для анализа этих случаев. В то же время в модели учитываются многие необходимые факторы с известными в теории автомобиля упрощениями: например, центр приложения силы аэродинамического сопротивления можно учитывать как фактор дорожного сопротивления, упругость шин учитывается аналогичным образом, а угол подъема определяется упрощенно и т. п.
Схема модели приведена на рис.2.1а,б. Здесь показан общий случай для движения автомобиля с произвольным ускорением на полотне дороги с определенным углом подьема. Для случая равномерного движения будет отсутствовать инерционная сила. На рис.2.16 показано расположение начальной и локальных, движущихся и связанных с автомобилем в виде материальной точки систем координат. В этой модели основные движущие, а также силы сопротивления приведены к центру масс автомобиля, представляемого как материальная точка. Кроме того, позволяет учитывать, например, жесткость подвески, а также упругость шин. Последний фактор дает представление об упругости шины как деформируемом элементе, поэтому в перспективе можно применять и более сложные модели качения. Для материальной точки в данной модели автомобиля можно также с помощью известных подходов оценивать динамическое распределение масс в виде ограничений, в некоторых случаях углы рыскания и т.п.Таким образом, связь локальных систем координат с движущейся материальной точкой может производить численный анализ на базе данной модели курсового движения с высокой точностью. При этом некоторые элементы в математической модели автомобиля можно рассматривать как известные, но вместе с тем отчасти трактовать как новые. Упругость шин, например, в данном представлении является коэффициентом сопротивления качению, который является отношением силы сопротивления качению к нормальной реакции на колесе и зависит от многих факторов. При этом можно учитывать коэффициент динамического перераспределения массы автомобиля, так как изменяется величины нормальных реакций в пятне контакта и параметры скольжения силы при передаче крутящего момента, т.е. как дополнительное упругое сопротивление или буксование. Боковые уводы также могут повлиять на точностъ расчетов, однако, в данной модели, как уже указывалось, они не учитываются, что принципал-но важно. Их можно будет учитывать в дальнейшем не-посредственно для соответствующих задач математического моделирования Поэтому первоначально рассматриваются два допущения: