Тяжелосредное обогащение углей - страница 42



Если зерна обогащаемого материала близки по крупности к частицам утяжелителя, то они могут вытеснять только воду и вести себя как взвешенные частицы утяжелителя. Эффективность обогащения гравитационными методами повышается с увеличением разности скоростей падения разделяемых зерен. С уменьшением размеров зерен снижается разность скоростей их падения и резко возрастает время, необходимое для их разделения.

Тяжелосредное обогащение крупного машинного класса (разделение по плотности на легкую и тяжелую фракции) производится в ванне колесного сепаратора, заполненной минеральной суспензией (рис. 2.1).


Рис. 2.1. Принципиальная схема тяжелосредного колесного сепаратора:

1 – загрузочная часть ванны; 2 – проточная часть ванны; 3 – разгрузочная часть ванны для легких фракций; 4 – разгрузочная часть ванны для тяжелых фракций; 5, 6 – подача вертикального и горизонтального потоков суспензии


Суспензия в колесный сепаратор поступает обычно двумя потоками – транспортным (горизонтальным) и восходящим (вертикальным).

Вероятностный подход к механизму разделения материала по плотности в тяжелосредных гравитационных сепараторах позволяет с достаточной полнотой раскрыть физическую сущность этого процесса.

Перемещение зерен обогащаемого материала происходит под действием: силы тяжести (веса зерна)



подъемной силы (архимедовой)



силы гидродинамического сопротивления среды

– при ламинарном движении (вязкостное сопротивление)



– при турбулентном движении (профильное сопротивление)



силы турбулентного давления



силы диффузного массопереноса



где d – размер частицы обогащаемого материала, м; δ, δ – плотность зерна и среды (суспензии), кг/м>3; g – ускорение свободного падения, м/с>2; μ – динамическая вязкость среды, Па·с; ν‾ – усредненная скорость движения зерна, м/с; ψ – безразмерный коэффициент сопротивления, являющийся функцией критерия Re; ψ – безразмерный коэффициент сопротивления, входящий в уравнение силы турбулентного давления; v (t) – мгновенная скорость движения зерна, м/с; ν‾>c, ν>c.>max, ν>c.>min – скорость потока суспензии, соответственно, усредненная, максимальная и минимальная, м/с; L – характерный размер вихря (L = d>max); K – коэффициент в уравнении турбулентной вязкости (K ≈ 1); h>max – максимальный размер стационарного вихря, м.

При перемещении зерна в среде, находящейся в покое или движущейся равномерно без ускорения, т. е. при отсутствии силы инерции F=(πd>3δ/6)[d(ν- ν>c)dt] имеет место равенство разности сил тяжести и подъемной силы и сил гидродинамического сопротивления среды. В этом случае из уравнений (2.4) – (2.8) получают известные формулы конечной скорости свободного падения зерна:

для ламинарного режима



для турбулентного режима



Однако такое приближенное рассмотрение не раскрывает механизма разделения зерен и причин взаимного засорения продуктов обогащения. Более реальная картина может быть получена только при учете сил турбулентного перемешивания.

О.Н. Тихонов показал, что эффективность разделения, которую можно характеризовать средним вероятным отклонением Е>pm, функционально зависит от отношения усредненной скорости зерна к коэффициенту микродиффузии (ν‾/B) входящего в вероятностное уравнение типа Фоккера-Планка:



где W – вероятность перехода зерна через границу, расположенную в ванне сепаратора на глубине h от места подачи питания; B – коэффициент диффузионного массопереноса.