В одно касание. Бизнес-стратегии Google, Apple, Facebook, Amazon и других корпораций - страница 5



Второй метод, который использует Spotify для создания плейлиста, – это «профиль вкуса». На основе только тех треков, которые прослушал пользователь и которые ему понравились, Spotify определяет, какие жанры (например, инди-рок или R&B) и поджанры (например, Chamber Pop или New Americana) он предпочитает, и рекомендует музыку этих жанров. Это другая форма стратегии Spotify – предлагать треки на основании ранее прослушанных.

Зачем инвестировать в рекомендацию музыки?

Работа инженеров Spotify для создания этого алгоритма для рекомендации стоит очень дорого – они зарабатывают сотни тысяч долларов в год. Так зачем же компания этим занимается?

Во-первых, отличная система рекомендаций – это коммерчески привлекательная особенность, помогающая Spotify выделяться на фоне конкурентов, например Apple Music. А все потому, что одной только большой музыкальной библиотеки недостаточно. Говоря на языке бизнеса, музыка – это товар. Любой трек в приложении звучит примерно одинаково, будь то Spotify, или Apple Music, или что-нибудь еще – и состоятельный человек может получить лицензию на создание гигантской библиотеки.

Если все музыкальные стриминговые сервисы могут иметь фактически одинаковый набор музыки, Spotify нужна изюминка, которая будет выделять его на фоне конкурентов. И система рекомендаций, безусловно, отвечает всем требованиям – она считается лучше, чем у Apple Music.

И поскольку с привлечением большего количества пользователей совместная фильтрация улучшается, Spotify (у которого уже есть огромное количество пользователей) может продолжить укреплять свое лидерство.

Во-вторых, наличие персональных рекомендаций повышает вероятность пользования этим сервисом. Чем больше людей пользуются Spotify, тем больше алгоритмы узнают о вкусах пользователя и, следовательно, лучше рекомендуют музыку. При частом использовании Spotify подобранная им музыка будет довольно хорошей, и переход на Apple Music, который не знает предпочтений пользователя, будет ошибочным.

Высокая «стоимость переключения» снижает вероятность перехода пользователя к другому поставщику. (Говоря в более широком смысле, любые личные данные, которые вводятся в приложение, например создание плейлистов в Spotify, увеличивают стоимость переключения, поскольку приходится воссоздавать их в любом новом приложении.)

Одним словом, персонализированные плейлисты отлично подходят для слушателей и являются удачным бизнес-ходом для Spotify – неудивительно, что все больше и больше приложений предлагают персональные рекомендации.

Как Facebook решает, что появится в ленте новостей?

Более миллиарда людей ежедневно просматривают свои ленты новостей на Facebook, а американцы тратят на него почти столько же времени, сколько и на живое общение. Лента новостей обладает огромным воздействием, поскольку к ней прикованы взгляды многих пользователей. Она может влиять на настроение, вовлечь в идеологические эхо-камеры или даже повлиять на то, за кого будет отдан голос на выборах. Одним словом, содержание ленты новостей имеет значение. Так как же Facebook решает, что появится в ней?



Упрощенное объяснение алгоритма новостной ленты Facebook. Источник: TechCrunch


В частности, как Facebook выбирает и сортирует сотни (или тысячи) свежих новостей, которые просматриваются ежедневно? Как и Google, Facebook использует алгоритм, выясняя, что является наиболее важным. Существует около 100 тысяч персонализированных факторов, но мы сосредоточимся на четырех основных.