Все науки. №10, 2024. Международный научный журнал - страница 5
Рис. 23. Рост потенциального барьера электронов с наличие стороннего источника потенциального поля
Рис. 24. Спектральный характер взаимодействия под действием стороннего электростатического поля
Каждый из полученных результатов на данный момент является важным и актуальным элементом исследования, который наглядно подтверждается согласно степени корреляции с полученными теоретическими данными в рамках постановки граничных условий для выведенного уравнения электропроводности.
Заключение
В результате исследования был представлен алгоритм моделирования, позволяющий описать явления класса электропроводности, под действием стороннего поля. В том числе большое внимание было уделено непосредственной стадии моделирования в статичной форме полупроводниковому элементу типа n-p-n, состоящий из теллурида кадмия, оксида кремния и кристаллического кремния. Дальнейшие работы в настоящем направлении являются также актуальными, наряду с последующим сведением в аналитический вид комплексной сборки элементов и их комбинаций, участвующие в сборке исследованного в настоящей работе полупроводникового элемента.
Использованная литература
1. Deng, Z., Li, K., Priimagi, A. et al. Light-steerable locomotion using zero-elastic-energy modes. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02026-4
2. Lee, KJ., Cros, V. & Lee, HW. Electric-field-induced orbital angular momentum in metals. Nat. Mater. 23, 1302—1304 (2024). https://doi.org/10.1038/s41563-024-01978-x
3. Lin, X., Zhang, S., Yang, M. et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02011-x
4. An approach to identify and synthesize memristive III—V semiconductors. Nat. Mater. 23, 1322—1323 (2024). https://doi.org/10.1038/s41563-024-01991-0
5. Liu, L., Ji, Y., Bianchi, M. et al. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. Nat. Mater. 23, 1339—1346 (2024). https://doi.org/10.1038/s41563-024-01987-w
6. Li, Z., Zhai, L., Zhang, Q. et al. 1T′-transition metal dichalcogenide monolayers stabilized on 4H-Au nanowires for ultrasensitive SERS detection. Nat. Mater. 23, 1355—1362 (2024). https://doi.org/10.1038/s41563-024-01860-w
7. Miura, M., Eley, S., Iida, K. et al. Quadrupling the depairing current density in the iron-based superconductor SmFeAsO1—xHx. Nat. Mater. 23, 1370—1378 (2024). https://doi.org/10.1038/s41563-024-01952-7
8. Hackett, L., Koppa, M., Smith, B. et al. Giant electron-mediated phononic nonlinearity in semiconductor—piezoelectric heterostructures. Nat. Mater. 23, 1386—1393 (2024). https://doi.org/10.1038/s41563-024-01882-4
9. Bae, J., Won, J., Kim, T. et al. Cation-eutaxy-enabled III—V-derived van der Waals crystals as memristive semiconductors. Nat. Mater. 23, 1402—1410 (2024). https://doi.org/10.1038/s41563-024-01986-x
10.Wang, X., Pan, C., Xia, N. et al. Fracture-driven power amplification in a hydrogel launcher. Nat. Mater. 23, 1428—1435 (2024). https://doi.org/10.1038/s41563-024-01955-4
11.Figgener, J., van Ouwerkerk, J., Haberschusz, D. et al. Multi-year field measurements of home storage systems and their use in capacity estimation. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01620-9
12.Tregnago, G. Combining photovoltaic elements. Nat Energy 9, 1052 (2024). https://doi.org/10.1038/s41560-024-01647-y