Все науки. №3, 2023. Международный научный журнал - страница 6



ОБЩЕЕ ПРЕДСТАВЛЕНИЕ ПОНЯТИЯ И ИСПОЛЬЗОВАНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПРИ ОПИСАНИИ НЕКОТОРЫХ ДИНАМИЧЕСКИЙ ЯВЛЕНИЙ

Алиев Ибратжон Хатамович


Студент 2 курса факультета математики-информатики Ферганского государственного университета


Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Как некогда сказал Стивен Строгац: «Со времён Ньютона человечество пришло к осознанию того, что физики выражаются на языке дифференциальных уравнений». Разумеется, что данный язык используется далеко за пределами физики и талант использовать его, ровно, как и воспринимать, даёт новые краски при изучении окружающего мира. В настоящей работе описывается общее представление об этом методе и сам процесс его изучения.

Ключевые слова: дифференциальные уравнения, исчисления, алгоритмы, математическая физика.

Annotation. As Stephen Strogatz once said: «Since the time of Newton, mankind has come to realize that physicists are expressed in the language of differential equations.» Of course, this language is used far beyond physics and the talent to use it, exactly as to perceive it, gives new colors when studying the surrounding world. This paper describes a general idea of this method and the process of studying it.

Keywords: differential equations, calculus, algorithms, mathematical physics.

Сами по себе дифференциальные уравнения возникают каждый раз, когда описать изменение легче, чем абсолютные величины. Например, легче описать характер увеличения или сокращения роста или падения численности населения или популяции отдельного вида, чем описать те или иные значения в определённый момент времени. В физике, точнее в Ньютоновской механике, движение описывается благодаря силой, а сила определяется неизменной массой и меняющимся ускорением, что является утверждением об изменении.

Дифференциальные уравнения делятся на 2 большие категории – обыкновенные дифференциальные уравнения или ОДУ, включающие функции с одними переменными, чаще всего в лице времени и уравнения в частных производных с несколькими переменными. Если же уравнения в частных производных описывают более сложные характеристики, например изменение температуры в различных точках пространства, то обыкновенные дифференциальные уравнения описывают более статичные характеристики, изменяющиеся во времени.

В качестве не плохого примера можно рассмотреть процесс падения некоего объекта. Как известно, гравитационное ускорение равняется 9,81 м/с>2, откуда получается, что если проанализировать положение тела в каждую секунду и перевести это состояние в векторы, то они будут накапливать дополнительную нисходящую 9,81 м/с>2 ускорения каждую секунду. Это и даёт пример простейшего дифференциального уравнения, решением коего будет функция y (t), производная которой даёт вертикальную составляющую, а скорость даёт вертикальную составляющую ускорения (1).



Это уравнение можно решить, выделив (2) для скорости и (3) для пути.




Интересен ещё тот момент, когда можно описывать движение небесных объектов в этом масштабе благодаря силе гравитации. Итак, даны два тела притяжение коего направлены в сторону друг друга с силой обратно пропорциональной квадрату расстояния между ними (4).



Известно, что производная координаты – скорость, производная скорости – ускорение и нужно получить функцию для движения, но по уравнению (4), известно только уравнение для ускорения (5).