Введение в логику и научный метод - страница 44
Мы можем варьировать не только субъект, но и другие термины такого суждения. Изменив отношение в суждении «Архимед был убит римским солдатом», мы получаем суждение «Архимед был восхвален римским солдатом», «Архимед был двоюродным братом римского солдата» и т. д. Если мы выразим отношение переменной R, то получим пропозициональную функцию: «Архимед R римский солдат». (Данную запись следует читать как «Архимед находится в отношении R к римскому солдату».) Варьируя в подобной манере термины и отношения в суждении и выражая их с помощью переменных, мы можем проявить логическую форму или структуру в ее точном виде.
Когда мы утверждаем суждение «все математики – квалифицированные логики», мы хотим сказать, что если любой индивид является математиком, то он также является квалифицированным логиком. Данное отношение можно выразить через импликацию между суждениями, полученными с помощью пропозициональных функций, следующим образом:
[Для всех значений х (х является математиком) ⊃ (х является квалифицированным логиком)],
где знак «⊃», как обычно, означает отношение «если… то» между суждениями, полученными из пропозициональных функций путем придания значений для х.
Суждения данного типа, утверждающие включение (или исключение) одного класса в другой (или из другого), некоторым образом схожи со сложными суждениями. Поэтому их не следует путать с суждениями о принадлежности классу, поскольку, как мы видели, отношение принадлежности классу не является транзитивным, тогда как отношение включения одного класса в другой является транзитивным. Таким образом, если «все математики являются квалифицированными логиками» и «все квалифицированные логики являются университетскими профессорами», то мы можем обоснованно заключить, что «все математики являются университетскими профессорами».
Выразим все четыре вида категорических суждений в новой записи:
1. «Все студенты – независимые мыслители» эквивалентно «[Для всех х (х является студентом) ⊃ (х является независимым мыслителем)]».
2. «Ни один студент не является независимым мыслителем» эквивалентно «[ «Для всех х (х является студентом) ⊃ (х является независимым мыслителем)′».
3. «Некоторые студенты – независимые мыслители» эквивалентно «[Существует х такой, что (х является студентом) . (х является независимым мыслителем)]».
4. «Некоторые студенты не являются независимыми мыслителями» эквивалентно «[Существует х такой, что (х является студентом) . (х является независимым мыслителем)′».
Два общих суждения (1 и 2) с очевидностью обладают логической формой, отличной от формы двух частных суждений (3 и 4). При этом все четыре суждения отличаются по форме от суждений с субъектно-предикатной формой.
Глава III Отношения между суждениями
§ 1. Возможные логические отношения между суждениями
Интерес логиков к структуре суждений вызван их желанием проявить все возможные формы суждений, с помощью которых суждения имплицируют друг друга. Помимо импликации суждения могут быть связаны и другими отношениями. Так, суждения «меновая стоимость товара пропорциональна объему труда, требующегося для его производства» и «предложение товара пропорционально спросу на него» связаны определенным отношением, заключающимся в том, что в них речь идет об экономике. Также связанными являются суждения «и самая блестящая речь надоедает, если ее затянуть» и «в мысли содержится величие человека» – в них верил Паскаль. Однако подобные связи не являются предметом интереса логика. Логическую значимость имеют те отношения между суждениями, благодаря которым возможная истинность или ложность одного или более суждений ограничивает возможную истинность или ложность другого или других суждений. Рассмотрим такие отношения.