Высокоскоростные печатные платы. Сохранение целостности электрических сигналов и электропитания - страница 2




Если изобразить руку, которая обхватила провод, и представить, что большой палец показывает направление тока, другие пальцы покажут направление «закручивания» силовых линий.


Рис. 2 Правило правой руки для определения направления силовых линий магнитного поля


Силовой характеристикой магнитного поля является вектор магнитной индукции B, направленный по касательной к силовым линиям магнитного поля или вектор напряженности магнитного поля H, направление которого в вакууме совпадает с направлением вектора B.


Набор одинаково направленных векторов магнитной индукции, распределенный по некоторой области пространства, называется магнитным потоком Ф. Магнитные потоки различных полей могут взаимодействовать между собой в соответствии с их направлением.

Индуктивная связь является второй из важнейших иллюстраций взаимодействия между соседними линиями передачи через магнитное поле.

Как и линии напряженности электрического поля, линии напряженности магнитного поля, их число на единицу объема, показывают величину и рельеф магнитного поля.


Если нарисовать векторы магнитной индукции по касательной к силовым линиям магнитного поля в центре витка с током, все они будут совпадать по направлению и суммарная величина магнитного потока, созданного такими векторами, будет равна сумме величин всех векторов в данной точке пространства. То есть, концентрация векторов и магнитный поток в центре витка с током будет иметь максимальное значение.


Рис. 3 Увеличение магнитного потока в центре витка с током


В месте изгиба проводника концентрация векторов магнитной индукции увеличивается по сравнению с их количеством на единицу прямого участка линии. Увеличение концентрации векторов в таких зонах говорит о локальном увеличении индуктивности и повышении энергии магнитного поля.

Именно из-за наличия изгибов и контуров большой крутизны и площади резко возрастает вероятность и уровень наводки между соседними линиями передачи.


Рис. 4 Повышение концентрации векторов B в центре изгиба проводника


Энергия магнитного поля определяется из выражения



Если сила тока и его скорость в проводнике меняются (например, в местах прохождения фронта или спада прямоугольного сигнала), вокруг проводника возникает переменное магнитное поле, которое создает (порождает вокруг себя) переменное электрическое поле. Такое взаимодействие приводит к появлению электромагнитного поля.


Рис. 5 Формирование электромагнитной волны


В вакууме направление и величина напряженности магнитного поля H и вектора магнитной индукции B совпадают. В общем случае справедливо выражение.



,где µ>0 = 4π*10>—7 Гн/м – магнитная постоянная, µ – магнитная проницаемость среды, π = 3,14 – постоянный коэффициент.


Вектор напряженности электрического поля перпендикулярен вектору напряженности магнитного поля. Вектор Умова-Пойнтинга П, равный векторному произведению векторов электрической напряженности E и магнитной напряженности H, показывает количество энергии и направление распространения электромагнитного поля.


На рисунке выше векторы показаны только в одной точке пространства. Если изобразить распространение волны для фронта прямоугольного импульса, волна будет излучаться от проводника в окружающую среду и будет перемещаться по ходу движения фронта сигнала вдоль проводника с током.


Рис. 6 Электромагнитное поле, сформированное фронтом импульса в проводнике


Электромагнитные волны способны накладываться друг на друга, например, при отражении от неоднородностей. Такое явление называется интерференцией.