Высокоскоростные печатные платы. Сохранение целостности электрических сигналов и электропитания - страница 5



Обратное преобразование обеспечивает «перенос информации» о параметрах импульса из частотной области во временную область.


Рис. 12 Форма импульса при сложении первых пяти гармоник


Проще говоря, энергия прямоугольного импульса может быть представлена спектром гармоник, распределенных по кратным частотам. Нарушение количества энергии гармонических составляющих на разных частотах приведет к искажению первоначальной формы сигнала на временной оси.


Верно и обратное утверждение – изменение формы сигнала влияет на перераспределение энергии гармонических составляющих в его спектре.


Энергия прямоугольного импульса распределена по нечетным гармоникам. Для других сигналов спектр будет иметь другой вид. Важно понять, что основной вклад в энергию и форму сигнала вносят ряд первых гармоник. Обычно учитывают от пяти до десяти гармоник. Ограничивая полосу пропускания линии передачи можно предотвратить появление резонансов на высших частотах за пределами основного спектра гармоник, что позволит улучшить электромагнитную совместимость устройств.


Для определения минимальной ширины полосы частот линии передачи, необходимой для неискаженной передачи одиночного импульса с заданным временем нарастания фронта t нар, можно использовать соотношение

f = 0,35/t>НАР

,где f – верхняя частота полосы пропускания.

Пассивные радиоэлементы

Резисторы, катушки индуктивности, конденсаторы в различных сочетаниях образуют простейшие электрические схемы – фильтры, резонансные колебательные контуры.


Пассивные элементы называют сосредоточенными, если их размеры много меньше (более чем в 10 раз) длины волны для максимальной частоты спектра сигнала, передаваемого в линии.


С ростом частоты размеры катушек индуктивности и конденсаторов, распределенных в линии передачи, становятся соизмеримы с длиной волны. В этом случае пассивные элементы называют распределенными.

Отсутствуя в линии передачи в явном виде, распределенные конденсаторы и индуктивности полностью определяют ее реальные характеристики.

Например, при использовании полосковой линии передачи со скоростью распространения электромагнитной волны

V = 1,5х10>8 м/с

для импульса с длительностью фронта

t>НАР = 1 нс

верхняя граница полосы пропускания линии f и длина волны 𝜆 будут иметь следующие значения:

f = 0,35/t>НАР = 350 МГц.


𝜆 = V/ f= 0,43 м


𝜆/10 = 4,3 см

Следовательно, сосредоточенным в данном случае можно считать элемент с геометрической длиной не более 4,3 см.

Для импульса высокоскоростного интерфейса с длительностью фронта равной 100 пс сравнивать размеры элемента нужно уже со значением 4,3 мм. И в этом случае выводные конденсаторы и даже чип компоненты размерами от 0805 и более (от 2 до 20 мм) можно считать распределенными.

Резистор

Конструктивно резистор представляет элемент с двумя выводами, который ограничивает поток зарядов, электрический ток. Основным параметром резистора является электрическое сопротивление, которое определяется удельным сопротивлением проводящего материала ρ>0, его длиной l и сечением S.



Резистор не накапливает электрическую или магнитную энергию. Он рассеивает ее в виде тепла в окружающее пространство. При протекании тока I через резистор сопротивлением R на его выводах создается разность потенциалов или падение напряжения, определяемое по закону Ома

U = IR

выделяется тепловая энергия

Q=I>2Rt

Сопротивление идеального резистора не зависит от частоты. Поэтому резистор не является реактивным элементом. При прохождении через резистор сигнал сохраняет свою форму. Возможно уменьшение его амплитуды. Причем это изменение амплитуды может происходить почти мгновенно, безынерционно.