Читать онлайн Дмитрий Жданов, Татьяна Лобаева - Химия для студентов-медиков: общая, физическая и коллоидная химия. Практикум-рабочая тетрадь
Утверждено Методическим советом Медицинского университета МГИМО-МЕД
Рецензенты:
Чистяков М. В. – кандидат физико-математических наук, доцент кафедры нормальной физиологии и медицинской физики, «Научно-образовательный институт «Высшая школа клинической медицины им. Н. А. Семашко», ФГБОУ ВО МГМСУ им. А. И. Евдокимова Минздрава России
Нестерова О. В. – доктор фармацевтических наук, заведующая кафедрой химии образовательного департамента Института фармации им. А. П. Нелюбина Сеченовского университета, заслуженный работник здравоохранения.
Предисловие к изданию
Целью освоения дисциплины «Общая, физическая и коллоидная химия» является формирование необходимых как для обучения последующим учебным дисциплинам, так и для непосредственного формирования медика, системных знаний о физико-химической сущности и механизмах процессов, происходящих в организме человека; изучение закономерностей химического поведения основных биологически важных классов неорганических и органических соединений, необходимых для рассмотрения процессов, протекающих в живом организме на молекулярном, надмолекулярном и клеточном уровнях.
Пособие «Химия для студентов-медиков: общая, физическая и коллоидная химия. Практикум-рабочая тетрадь» составлено авторами на основе многолетнего педагогического опыта в ведущих медицинских ВУЗах РФ в соответствии с ФГОС и рассчитано для использования в учебном процессе по направлению подготовки 31.05.01 Лечебное дело (специалитет), а также для студентов других медицинских специальностей: 33.05.01. Фармация (специалитет), 31.05.03 Стоматология (специалитет).
Сборник включает краткое теоретические введение, методики лабораторных работ и разноплановый комплект учебно-методических материалов по 3 основным разделам курса химии для студентов-медиков:
• Введение в химию. Основные понятия и законы химии.
• Общая химия. Физическая химия
• Коллоидная химия
Темы заданий и задач данного пособия соответствуют одному семестру изучения общей, физической и коллоидной химии для студентов специальности «Лечебное дело» и других медицинских специальностей.
Пособие адресовано студентам-медикам, аспирантам, стажерам и преподавателям для текущего использования в учебном процессе, а также для аттестации студентов.
Лобаева Татьяна Александровна – кандидат биологических наук (специальность «Фармацевтическая химия, фармакогнозия»), доцент по специальности «Биохимия», преподаватель кафедры фундаментальных дисциплин Медицинского университета МГИМО-МЕД.
Автор свыше 80 учебно-методических и научных работ по фармацевтической и токсикологической химии, молекулярной биологии, биохимии, педагогике.
Жданов Дмитрий Дмитриевич – доктор биологических наук, заведующий лабораторией медицинской биотехнологии ИБМХ им. В. Н. Ореховича, доцент по специальности «биохимия», профессор кафедры биохимии им. акад. Берёзова Т. Т. МИ РУДН.
Автор свыше 100 научных и учебно-методических работ по молекулярной биологии, биохимии, медицине.
Раздел 1. Введение в химию. Основные понятия и законы химии
1.1. Введение в химию. Основные понятия и законы химии. Классификация химических соединений. Строение атома. Химическая связь
Часть 1. Теоретическое введение
Химический элемент – вид атомов с одинаковым зарядом ядра.
Атом – наименьшая частица химического элемента, сохраняющая все его химические свойства. Химические свойства атома определяются его строением.
Молекула – наименьшая частица вещества, обладающая его химическими свойствами, которые определяютя её составом и химическим строением мощью химических формул, в которых атомы обозначаются символами химических элементов, а их количество подстрочными индексами.
Атомная масса (Аr) – относительная масса атома элемента, показывающая во сколько раз данный атом тяжелее 1/12 атома углерода, т.е. выраженная в дальтонах.
Молекулярная масса (Mr) – относительная масса молекулы вещества, выраженная в дальтонах. Молекулярная масса вещества равна сумме масс всех атомов, образующих молекулу или частицу.
Величиной, характеризующей число структурных единиц, является количество вещества. За единицу измерения количества вещества принят моль.
Моль – количество вещества n (либо ν (ню), содержащее столько структурных единиц, сколько содержится в 12 г изотопа >12С.
Молярная масса (M) – масса 1 моля вещества в граммах, равная отношению массы вещества (m) к соответствующему количеству вещества (n):
М = m/n
M численно равна молекулярной массе Mr.
N>А – число Авогадро, которое соответствует числу структурных единиц в одном моле любого вещества. N>А = 6,022 · 10>23 1/моль.
Масса вещества (m), его количество и молярная масса между собой связаны соотношением:
m = n·М
Молярный объём газа (V>M )
– объём, который занимает 1 моль газообразного вещества при данных условиях.
– это объем 1 моля газа, равный отношению объема газа (V) к количеству вещества (n).
При нормальных условиях (н.у.), т.е. при температуре 20 >◦ С и давлении 1 атм. (101,3 кПа), молярный объём газа (Vm) составляет 22,4 л/моль. При вычислении молярного объёма газа в других условиях используют уравнение состояния идеального газа:
P·V = n·R·T
(P – давление, V – объём газа, n – количество газа, Т – абсолютная температура,
R – универсальная газовая постоянная, значение которой 8,31 Дж/моль·K = 0,082057 л·атм·К⁻¹·моль⁻¹)
Эквивалент – реальная или условная часть формульной единицы (атома, молекулы или иона), принимающая участие в образовании одной химической связи при протекании химической реакции.
Под «реальной» частицей понимают реально существующие соединения (NaOH, H>2SO>4, H>2O и др.), под «условной» частицей – доли этих реальных частиц 1/2 H>2SO>4). Например, в реакции NaOH + HCl = NaCl + H>2O эквивалентом гидроксида натрия будет катион Na>+ потому что при обмене он заменяется на катион водорода. То есть он эквивален H>+.
Числo эквивалентности Z показывает, сколько эквивалентов вещества содержится в одной формульной единице. Значение Z зависит от химической реакции, в которой вещество принимает участие.
Наряду с числом эквивалентности часто используют понятие фактора эквивалентности f, представляющего собой долю формульной единицы, соответствующую эквиваленту f =1/Z.
Пример:
H>2SO>4+ 2NaOH = Na>2SO>4 + H>2O
Z (H>2SO>4) = 2
Z (NaOH) = 1
В данной реакции одна молекула серной кислоты, отщепляя 2 катиона водорода, расходует две химических связи на образование средней соли Na>2SO>4, т.е. 1 молекула серной кислоты содержит 2 эквивалента. Число эквивалентности Z = 2, а эквивалентом серной кислоты является ½ молекулы, т.е. фактор эквивалентности f = ½.
H>2SO>4+ NaOH = NaHSO>4 + H>2O
Z (H>2SO>4) = 1
Z (NaOH) = 1
При образовании кислой соли NaНSO>4 в молекуле серной кислоты замещается на натрий только один атом водорода, поэтому в данной реакции эквивалентом серной кислоты является вся молекула.
Примечание:
А) В химических реакциях обменного типа число эквивалентности считают равным количеству моль Н+ или ОН¯ ионов, которые отщепляются или присоединяются 1 молем вещества.
В) В окислительно-восстановительных реакциях (ОВР) число эквивалентности рассчитывается по отношению к количеству отданных или принятых частицей электронов. Количество эквивалентов вещества νЭ прямо пропорционально произведению количества моль вещества и числа эквивалентности: νЭ = Z · ν
Молярная масса эквивалента (эквивалентная масса) МЭ равна массе одного моль эквивалента вещества. [MЭ]= 1 г/моль
Молярная масса эквивалента МЭ (размерность г/моль)– равна массе вещества, эквивалентной 1 молю водорода или 1 молю электронов в химической реакции. Численно равна эквиваленту вещества. МЭ равна молярной массе вещества, умноженной на фактор эквивалентности:
М(1/z X) = M(X) • f>экв (X) = M(X) / z
1. Закон сохранения массы (Михаил Васильевич Ломоносов, 1756 и Антуан Лоран Лавуазье, 1778)
Масса исходных веществ, вступивших в реакцию, равна массе получившихся веществ.
2. Закон эквивалентов (И. В. Рихтер, 1792 и У. Х. Волластон, 1807)
Отношение масс веществ, вступающих в химическое взаимодействие, равно отношению их химических эквивалентов
3. Закон постоянства состава (Жозеф Луи Пруст, 1799г.).
Состав индивидуального химического соединения постоянен и не зависит от способа получения этого соединения.
4. Закон простых кратных отношений. (Джон Дальтон, 1803г.). Если два элемента образуют между собой несколько соединений, то на одну и ту же массу одного элемента приходятся такие массы другого, которые относятся друг к другу, как небольшие целые числа.
5. Закон простых объёмных отношений (Жозеф Луи Гей Люссак, 1808).
Объёмы реагирующих газов относятся друг к другу и к объёмам газообразных продуктов как небольшие целые числа.
6. Закон Авогадро (Амедео Авогадро, 1810г.; Канниццаро, 1860г.).
В равных объёмах газов при одинаковых условиях содержится одинаковое число молекул.
ЗАДАНИЕ 1
Как проанализировать образец воды и убедиться, что она чистая или содержит примеси?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 2. Приведите по 2 примера веществ, являющихся при 20 градусах Цельсия: а) газами б) жидкостями в) твердыми
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 3. Приведите примеры смесей: а) двух газов, б) 2 жидкостей в) твердого и жидкого вещества г) газа и жидкости
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 4. Как очистить кукурузную крупу от соли и соевое масло от воды?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 5. В чем сходство и различие очистки веществ фильтрованием и отстаиванием?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 6. В чем заключается очистка веществ перегонкой? Какое оборудование необходимо иметь в лаборатории для проведения перегонки?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 7. Что называют экстракцией? Какое оборудование необходимо иметь в лаборатории для проведения экстракции?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 8. Назовите 5 любых веществ и область их применения. Какие из них используются в медицине?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 9. Приведите 3 примера, как чистое вещество превращается в смесь. Какие смеси используются в медицине?
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 10. Будет ли смешиваться с водой (образовывать однородную жидкость, растворяться): а) спирт б) ацетат натрия (соль) в) бензин г) подсолнечное масло д) серная кислота
Решение:
_____________________________________
_____________________________________
ЗАДАНИЕ 11. Напишите формулы 3 веществ, относительные молекулярные массы которых кратны а) 3 б) 4
ЗАДАНИЕ 12. Определите валентность центрального атома в соединениях: а) азотистая кислота б) фосфорная кислота в) перманганат калия г) хромат калия д) карбонат натрия
ЗАДАНИЕ 13. В каком из оксидов марганца самая высокая массовая доля кислорода : MnO, Mn>2O>3, MnO>2, Mn>3O>4, Mn>2O>7 Ответ подтвердите расчетом.
ЗАДАНИЕ 14. В каких соединениях CuS, FeS