Математические олимпиады по лигам. 5-9 классы - страница 11
4. Школьники ехали на автомашине из деревни в город. Когда они проехали 3/4 пути, автомашина была остановлена для ремонта. Оставшуюся часть пути школьники проделали пешком, затратив на это времени в четыре раза больше, чем они ехали на автомашине. Во сколько раз быстрей ехали школьники на автомашине, чем шли пешком?
5. Дано трехзначное число ABB, произведение цифр которого – двузначное число AC, произведение цифр этого числа равно С (здесь цифры в записи числа заменены буквами; одинаковым буквам соответствуют одинаковые цифры, разным – разные). Определите исходное число.
6. Ребята принесли из леса по полной корзинке грибов. Всего было собрано 289 грибов, причем в каждой корзинке их оказалось одинаковое количество. Сколько было ребят?
4 тур
1. Упростите выражение (2 + х – 1 + Зх): (7х + 6 – 3х – 5).
2. Восстановите недостающие цифры:
3. На колхозном рынке продаются два арбуза разных размеров. Первый в диаметре 40 см, а второй – 80 см. Первый арбуз стоит 30 р., второй арбуз стоит 180 р. Какой из арбузов выгоднее купить и почему?
4. Перед нами толстая дощечка с тремя отверстиями: квадратным, треугольным и круглым (на рисунке дан вид сверху). Может ли существовать одна затычка такой формы, чтобы закрывать все эти отверстия? Если да, то опишите ее. Если нет – обоснуйте невозможность создания такой затычки.
5. Со стартовой площадки вылетел на север вертолет. Пролетев в северном направлении 100 км, он повернул на восток. Пролетев в эту сторону 100 км, вертолет сделал новый поворот – на юг и прошел в южном направлении 100 км. Затем он повернул на запад и, пролетев 100 км, опустился. Спрашивается: где расположено место спуска вертолета относительно стартовой площадки – к западу, к востоку, к северу или югу? Подсказка: Земля имеет форму, близкую к шару, а потому вертолет не вернется на стартовую площадку!
6. Сколько существует трехзначных натуральных чисел с четными цифрами, таких, что: а) цифры в числе не повторяются; б) цифры в числе могут повторяться; в) ровно две цифры в числе повторяются?
5 тур
1. Сможете ли вы найти четыре целых числа, сумма и произведение которых являются нечетными числами?
2. Первый вторник месяца Митя провел в Смоленске, а первый вторник после первого понедельника – в Вологде. В следующем месяце Митя первый вторник провел в Пскове, а первый вторник после первого понедельника – во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
3. Сколько нечетных чисел заключено между 300 и 700?
4. Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Сколько попыток вы попросите вам предоставить, чтобы наверняка открыть все чемоданы?
5. В турнире участвовали пять шахматистов. Известно, что каждый сыграл с остальными по одной партии и все набрали разное количество очков; занявший 1-е место не сделал ни одной ничьей; занявший 2-е место не проиграл ни одной партии; занявший 4-е место не выиграл ни одной партии. Определите результаты всех партий турнира.
6. Начнем считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвертый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 1992-м?
6 тур
1. Найдите, какую цифру обозначает каждая буква в следующем равенстве: АХ