От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях - страница 10



Истинный потенциал электричества был реализован, только когда удалось понять и использовать преимущества распределенной генерации. Точно так же потенциал ИИ раскроется, только когда получится в полной мере задействовать его возможности в области прогнозирования. Для нас это означает, что прогнозирование играет важную роль в принятии решений. Мы покажем, что во многих случаях изменения будут настолько значительными, что потребуют от компаний перестроить всю систему принятия решений и обеспечивающие ее процессы. Только в этом случае внедрение ИИ станет действительно реальным.

Мы находимся в межвременье: колоссальный потенциал ИИ уже очевиден, но его трансформирующее воздействие на экономику еще не началось. Verafin входит в те 11 % крупных корпораций, которые добились успеха при внедрении ИИ. Их прогнозы вписались в существующую систему, а бизнес-процессы и организация труда оказались к этому приспособлены, так что значительных нововведений не потребовалось. Остальные 89 % компаний еще не готовы. Перспективы понятны, но как их реализовать, пока неясно. Необходимо найти способ использовать машинные прогнозы для повышения эффективности работы, то есть для принятия более эффективных решений. Благодаря ИИ люди смогут делать больше, поскольку будут принимать лучшие решения. Речь идет не только о технических аспектах прогнозирования (сборе данных, построении моделей, генерации прогнозов), но и об организационных – создании условий, позволяющих людям принимать правильные решения в нужное время. А стратегическая задача состоит в том, чтобы определить, что можно сделать по-другому после получения более качественной информации.

Первый этап

Для межвременья характерны энтузиазм и успех точечных решений, но при этом ИИ все еще остается нишевой технологией. Тем не менее уже проводятся эксперименты и существуют прикладные разработки, в основном специфические. Они позволяют улучшить имеющиеся продукты, например телефоны или системы безопасности автомобиля. Бюро переписи населения США выяснило, используют ли компании ИИ. В опросе участвовали представители более 300 тыс. организаций. Из тех, кто ответил положительно, большинство подчеркивали, что применяют ИИ для автоматизации и улучшения процессов. Другими словами, внедряются точечные и прикладные, но не системные решения. Соответственно, ИИ довольно скромно влияет на производительность труда. Анализ существующих рабочих процессов и участков, которыми ИИ может заменить человека, приносит значимую дополнительную ценность, но широких возможностей не открывает.

В период межвременья предприниматели и менеджеры борются за то, чтобы реализация прикладных решений стала экономически оправданной. Как отмечает Натан Розенберг, «многочисленные неудачи объясняются тем, что предприниматель не учел взаимосвязь между технологией, поглощавшей все его внимание, и остальными аспектами бизнеса как целостной системы».

Настоящая трансформация произойдет, только если сосредоточиться на системных решениях. Они поднимут внедрение ИИ на уровень экономики в целом и создадут импульс для его дальнейшего прикладного применения. При таком потенциале масштабирования и последующих инноваций ИИ станет экономически выгодным.

Учитывая важность этих решений, необходимо четко объяснить, что имеется в виду. Итак, давайте определимся с понятиями:


• Точечное решение улучшает существующую процедуру. Его можно внедрить независимо от прочих решений и без изменения системы, в которую оно встроено.