От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях - страница 8



• Одни ценностные предложения привлекательнее других. В случае с электричеством точечные и прикладные решения, основанные на прямой замене пара электричеством без модификации системы, имели ограниченную ценность. Поэтому изначально инновация внедрялась медленно. Со временем некоторые предприниматели сумели предложить решения на системном уровне благодаря тому, что электричество обеспечивало автономную работу станков – при использовании пара это было невозможно или слишком дорого. Во многих случаях для системных решений стоимость была значительно выше, чем для точечных.

• Электричество позволило отделить машину от источника энергии и тем самым сместить ценностное предложение от «более низкой стоимости топлива» к «гораздо более производительной организации производства». Точно так же ИИ позволяет отделить прогнозирование от других аспектов принятия решения и тем самым сместить ценностное предложение от «более низкой стоимости прогнозирования» к «гораздо более эффективному процессу принятия решения».

Глава 2. Будущее систем ИИ

В 2017 году мероприятия, посвященные ИИ, проходили одно за другим. На них собирались представители бизнеса, правительств и академических кругов. Мы осознавали, что ИИ способен трансформировать экономику, и решили, что это перспективная тема для дискуссии лучших мировых ученых. Чтобы определить перечень приоритетных исследований, мы организовали в Торонто конференцию по ИИ. К нашему удивлению, мы без труда привлекли множество участников. Среди них был Пол Милгром из Стэнфордского университета, который впоследствии стал лауреатом Нобелевской премии за усовершенствование теории аукционов. «Я хорошо помню, как в 1990 году NSF[2] предложил обсудить экономику интернета, – написал он нам, – а я был слишком занят теорией принципала-агента, экономикой фирмы и супермодулярностью и потому отказался. И зря! На этот раз никаких оправданий. Да, я буду у вас».

Некоторые участники конференции оптимистично оценивали перспективы ИИ. Еще один нобелевский лауреат, Даниэль Канеман, сказал: «Думаю, в мире не слишком много того, что в итоге не смогут сделать компьютеры». Бетси Стивенсон, работавшая в Совете экономических консультантов при президенте Обаме, так резюмировала подобные настроения: «Очевидно, коллеги считают, что искусственный интеллект открывает возможности для того, чтобы получить существенную экономическую выгоду».

Однако среди собравшихся были и скептики. Лауреат Нобелевской премии Джозеф Стиглиц разделял мнение, что развитие ИИ способно усугубить неравенство. Тайлер Коуэн, экономист и бывший обозреватель The New York Times, опасался, что из-за производительности ИИ увеличится дефицит материальных ресурсов. Мануэль Трахтенберг из Израиля, часть своей карьеры посвятивший политике, отметил, что долгосрочные преимущества технологии не имеют значения, если растущее сопротивление автоматизации и распространенное мнение о ее влиянии на рабочие места приведут к революции.

Особенно интересен тезис о том, что ИИ, похоже, вообще не оказывает большого влияния на экономику. Экономисты Эрик Бриньолфсон, Дэниел Рок и Чад Сайверсон отмечают:

Мы живем в эпоху парадоксов. Все больше областей, где системы на основе ИИ соответствуют человеческому уровню или превосходят его, опираясь на стремительный прогресс в других технологиях и способствуя стремительному росту цен на акции. При этом зафиксированный в последнее десятилетие рост производительности труда сократился вдвое, а реальные доходы большинства американцев с конца 1990-х годов стагнируют.