Теория понятий. Технология семантического мышления - страница 6



Это текст из «Викизнания».

До XIX века считалось, что точного определения множества нет. Множеством считалось любое скопление предметов. В конце XIX века Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Теория понятий считает это утверждение ошибочным, абзацем выше приведено дословное несколько иное канторовское определение понятия множества.

Множество объектов, обладающих свойством A (x)!, обозначается {x|A (x)}!. Если некое множество Y= {x|A (x)}!, то A (x)! называется характеристическим свойством множества Y!. Данная концепция привела к парадоксам. После этого теория множеств была некорректно аксиоматизирована. На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело – Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

На день сегодняшний имеются и другие определения понятия множества.


Мно́жество – одно из ключевых понятий математики, в частности теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения; для его объяснения используются описательные формулировки, характеризующие множество как совокупность различных элементов, мыслимую как единое целое. Также возможно косвенное определение через аксиомы теории множеств. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством.

Теория понятий предлагает и использует несколько иное определение множества не в противоречии с наивным определением Кантора.


Диалектика теории множеств


В начале XX века Г. Кантор пришел к выводу, что интуитивная математика, которой он занимается, требует логического обоснования, требует формализации. Требуется основание математики, и Кантор занялся философией математики, проблематикой мышления в математике. Теория понятий считает, что в соответствии с диалектическим законом единства и борьбы (конкуренции) противоположностей, интуитивная математика распалась на две математики: аксиоматическую математику, основанную на формализации, которая абстрагируется от семантики естественного языка, и противоположную прикладную, основанную на использовании этой самой семантики. Занявшись философией математики, Кантор хотел как лучше, а получилось как всегда. В результате появилась не философия математики, а математическая философия (онтология, информатика) аналогично возникновению других математических наук: математической физики, математической логики и т.д., что лишний раз подтверждает, что математика является царицей всех наук. К слову, можно заметить, что саму философию в свое время предложил математик Пифагор. Теория понятий считает, что эта математическая философия представляет единение всех имеющихся наук.

Формализа́ция – представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.

Поскольку лингвистическая структура естественного языка не совпадает с логической структурой форм и законов мышления, которые воплощаются в этом языке, логика вынуждена создавать специальные средства, которые бы дали возможность изъять из естественного языка формы мышления, их логические свойства, существенные отношения между ними, определить принципы логической дедукции, критерии различия правильных и неправильных способов рассуждения.