Теория понятий. Технология семантического мышления - страница 5



Следование аксиоматическим методам должно, как нам кажется, действительно привести к системе законов природы, соответствующих в своей совокупности действительности, и необходимо лишь мышление, то есть дедукция в терминах понятий, чтобы построить все физическое знание; и тогда был бы прав Гегель, утверждавший, что все явления природы можно вывести из понятий.

Инструментом, посредством которого осуществляется взаимосвязь теории и практики, мышления и наблюдения, служит математика; она наводит мосты и неусыпно следит за тем, чтобы те не утратили способность выдерживать нагрузку. Отсюда следует, что в основе всей нашей современной культуры, поскольку она направлена на постижение природы разумом и использование природы на благо человеку, лежит математика. Еще Галилей сказал: «Понять Природу может лишь тот, кто знает язык, на котором она говорит с нами, и его письмена; язык же ее – математика, письмена – математические фигуры». Канту принадлежит следующее высказывание: «Я утверждаю, что в каждой области естествознания собственно науки столько, сколько в ней математики».

Истинная причина, по которой Канту не удалось найти неразрешимую проблему, по моему мнению, состоит в том, что неразрешимых проблем вообще не существует. Вместо непознаваемого, о котором твердят глупцы, наш лозунг гласит прямо противоположное: «Мы должны знать, мы будем знать».

В обоснование логики этого утверждения можно привести его замечание о логических парадоксах. Гильберт писал: «…эти парадоксы происходят скорее потому, что используются недопустимые, бессмысленные образования понятий, которые в моей теории исключаются сами собой». Можно сказать, что теория семантических понятий обеспечивает в соответствии с теорией Гильберта постановку семантически корректных проблем, что гарантирует их разрешимость. Алгоритмически неразрешимых проблем не существует!

К сожалению, Гильберт не определяет, что есть аксиоматика. Он считает, что и в повседневной жизни используются методы и возникают понятия, требующие высокой степени абстракции, понимаемые только с помощью неосознанного, интуитивного применения аксиоматических методов. Некоторое аксиоматическое определение, которое может быть использовано для определения различных новых сущностей, предлагает Кантор.

4. Диалектическая теория семантических множеств

«Мно́жество – один из ключевых объектов математики, в частности теории множеств. «Множество есть многое, мыслимое нами как единое» (Георг Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие – значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество – это, пожалуй, самое широкое понятие математики и логики). Существует два подхода к понятию множества.

«Наивная теория множеств» Георга Кантора. Дать определение чему-либо это значит выразить понятие через ранее определенные. При этом должны быть некоторые базовые понятия, которые формально не определены. Множество может быть одним из таких понятий. В рамках наивной теории множеств множеством считается любой четко определенный набор объектов. Кантору принадлежит также следующая характеристика понятия «множество»: Множество – это объединение определённых, различных объектов, называемых элементами множества, в единое целое. Однако вольное использование наивной теории множеств приводит к некоторым парадоксам, в частности к парадоксу Рассела».