Аналитика для руководителей. Стратегия и развитие бизнеса на базе данных, а не на интуиции - страница 2
1. Понимание миссии компании. Миссия прописывается в виде тезисов: чем занимается компания, для кого и зачем она это делает.
2. Определение приоритетных целей. Миссия помогает определить актуальные на данный момент цели бизнеса: увеличить прибыль или выйти на новый рынок? расширить производство или оптимизировать логистику? увеличить базу клиентов или повысить узнаваемость бренда? В зависимости от целей результаты анализа будут отличаться.
3. Создание системы метрик. Метрики – это числовые показатели, которые дают вам информацию: о продукте, об эффективности работы компании, подразделения или отдельных маркетинговых акций и т. д. Нам важно выбрать ключевые метрики, анализ которых покажет, приближаемся ли мы к выбранным целям.
4. Выбор источников данных. Данные поступают из разных источников – нужно отобрать те, которые содержат полезную для принятия решения нагрузку. То есть те, которые напрямую влияют на нашу систему метрик.
5. Сбор, сортировка и очистка данных. Как правило, нужно обрабатывать огромные массивы данных и приводить их к общему виду, потому что в разных источниках формат работы с данными отличается. Если не привести все к одному формату и не удалить дубликаты, аналитика потеряет смысл. Любая неточность, любое несовпадение – вплоть до единиц измерения и количества столбцов в таблицах – может исказить результаты, так что не стоит недооценивать этот этап.
6. Анализ данных. Когда информация собрана и очищена, ее можно анализировать: находить закономерности, строить гипотезы и составлять отчеты.
7. Выводы на основе анализа. Здесь определяют слабые места или точки роста. К примеру, организация провела маркетинговую акцию. Результат успешный или нет? Как акция повлияла на бизнес? Стоит ли изменить что-то в рекламе, ценообразовании? Именно анализ подсказывает ответы на эти и другие вопросы.
8. Улучшение продукта. Предыдущие этапы – фундамент для конкретных действий. На основе полученной информации компания разрабатывает план по изменению продукта, чтобы сделать его еще лучше.
Здесь можно привести пример из практики моей компании. Один из наших заказчиков, образовательный стартап, выбрал миссию – помочь студентам из Юго-Восточной Азии обучиться востребованным профессиям в ИТ. А для этого надо было, чтобы студенты узнали о проекте, познакомились с его услугами и смогли записаться на курс.
Компания поставила несколько целей, которые должны были помочь в выполнении миссии. Среди них – создание эффективного отдела продаж, где менеджеры оперативно отвечали бы на заявки студентов.
Выбрали метрики, которые надо было отслеживать, – скорость ответа на заявку и конверсия из лида в покупку. Затем определили источник данных – CRM, где отображалось, откуда пришел человек, кто ему ответил и как быстро.
Наша команда настроила сбор и обработку данных, а также сверстала дашборд. На нем отображалась шкала со скоростью ответа, можно было настроить фильтры по источникам лидов или по отдельным продажникам.
Дашборд (рис. 2) помог заказчику проанализировать работу отдела и выяснить, что конверсия в покупку выше всего, когда менеджер отвечает на заявку клиента в течение 15 минут – не дольше. С этими данными на руках заказчик разработал новые KPI для отдела продаж, чтобы повысить эффективность работы. Теперь он также мог контролировать нагрузку на сотрудников: если скорость разбора заявок по всему отделу начинала падать, это говорило о том, что продажники не справляются с объемами. А если у всех получается и только отдельные менеджеры затягивают с ответами, то это повод присмотреться конкретно к ним.