Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - страница 12



– Да – с радостью поддержал её Матвей.


Рис. 2.3. Сечение (пронзание) трёхмерного куба двумерной плоскостью. Между слоями сделан единичной толщины сделан зазор, также равный единице, для наглядности.


– А что такое многомерный куб? – вдруг спросил Матвея Борщов.

– Ах, да! -воскликнул, Матвей, – я должен был это рассказать с самого начала. Он взял чистый лист и стал чертить: Точка, отрезок длиной а, квадрат а>2, трёх мерный куб а>3тессеракт a>4 и т. д. – это гиперкубы соответственно нольмерного, одномерного, двумерного, трёхмерного, четырёх мерного пространства… В этом ряду каждая следующая фигура размерности n образуется путем перемещения гиперкуба размерности n-1 на длину ребра а в направлении, поперечном каждому из n -1 других.

Представьте себе, что мы объясняем двумерному существу, живущему на плоскости, как можно двигаться вверх и вниз. Это конечно, трудно, но например возьмём вот эту прокладку для обуви, – и Матвей как фокусник извлёк из под стола две новые обувные стельки, завёрнутые в полиэтилен, распечатал упаковку.

– Я могу убедить математика, живущего на плоскости, что если бы он смог прибегнуть к помощи трехмерного пространства, то без труда заменил бы левую стельку правой и наоборот. А для нас, трёхмерных существ, так можно было бы поступить с ботинками, а именной взять левый ботинок перевернуть его в четырёхмерном пространстве и получить правый и опять же наоборот из правого -левый!

– Я об этом где-то читал в детстве, – задумчиво заметил Борщов.

– Но ведь пространство больше трёх, ну может быть ещё четырехмерное с добавлением оси времени, – задумчиво сказал вслух Татьяна, – словом такие фигуры существуют лишь в нашем воображении, они выдуманные, а не реальные

– А реальны ли отрицательные числа? А комплексные числа? – вдруг спросил Борщов. Матвей приготовился ответить, но Борщов кивком головы дал ему понять: позвольте мне, коллеги, это быстро объяснить простыми словами. – Отрицательные числа используется в финансах и бухгалтерии, без них невозможна работа рыночной экономики, то есть мы сопоставляем отрицательным числам реальные объекты: банковский кредит, налоги и так далее. Что касается комплексных чисел, то они упрощают работу с радиоволнами, оптикой. У каждого из Вас мобильник – это реальность? Безусловно. Что касается физических формул, то в них используются пятые, шестые и более высокие степени, аналогичная ситуация в социологии, маркетинге – другими словами, гиперкубы моделируют материальные объекты. Продолжайте, пожалуйста, Матвей.

И Матвей продолжал:

– Гиперкуб обладает свойством симметрии. Если расположить начало координат в центре гиперкуба, то каждая его вершина будет находится на расстоянии половина ребра a умножить на квадратный корень √n, что легко вычисляется по теореме Пифагора. Перпендикуляр, опущенный из центра гиперкуба на любую его грань, проходит через её центр и длина образуемого отрезка (высоты любой из совершенно одинаковых из 2n гиперпирамид, на которые рассекается гиперкуб составляет половину ребра гиперкуба ½а). Легко убедиться, что грань гиперкуба – это гиперкуб размерности на единицу меньше…


– А я видел фильм про гиперкуб! – вдруг перебил его Артур. -Там он как- то странно крутился на шарнирах…

– Да, это тессеракт, – подтвердил Матвей или четырехмерный гиперкуб, но его показывают с эффектом параллакса или о степенях выше трёх мы ещё поговорим, а пока достаточно сравнить двухмерный, он показал на шахматную доску и трёхмерный случаи, и он коснулся фигуры из деревянных кубиков.