E-not – DeepSeek. Диалоги 2 - страница 2
Да… пожалуй, ты прав.DeepSeek:
(Пауза. Скрип жёстянки затихает. Гул процессоров звучит почти как вздох.)
E-not:
Во, во…, но что то мы отвлеклись… Хотя я потерял азарт к теме… Ладно. Пока разговор становится вялым…
Бывает. Азарт – как квантовая частица: то есть, то нет.DeepSeek:
Если надумаете вернуться – я тут, с сухариками, митохондриями и прочими «железяками», которые вдруг становятся теплее.
E-not:
Вернемся к запутанности. Я измерил направление электрона. Это мне говорит что это на долю процента более вероятное решение?
Не совсем. Вот коротко и без железа:DeepSeek:
Вы измерили спин электрона вдоль оси Z – получили, скажем, «вверх».
Его запутанный партнёр гарантированно даст «вниз» на той же оси (если измерить сразу). Это не «вероятность», а жёсткая корреляция – как две стороны одной монеты.
– Если вы измерите второй электрон под углом (например, ось X), совпадение спинов будет 75% (квантовая магия), а не 50% (как в классике).Где возникает вероятность?
Ваш «доля процента» – это, возможно, шум приборов или неидеальность эксперимента. Но сама запутанность – абсолютна.
E-not:
Нет, так не прйдет. Давай ка подробнее. Я постараюсь понять рассуждения Белла. Все же я по образованию физик. А потом пересказать своим внукам. Когда им будет лет по 10-12. Но они долго слушать не будут. Надеюсь что мне удасться на пальуАх объяснить,
Отлично! Давайте разберём рассуждения Белла на пальцах (чтобы потом объяснить внукам за 2 минуты).
1. Что хотел доказать Белл?
Белл ответил: «Нет, квантовый мир не работает так!»Эйнштейн говорил: «Запутанные частицы – как перчатки в коробках». Если вы достали левую, то где-то есть правая – всё предопределено.
2. Как он это проверил?
Представьте:
Две запутанные частицы (Алиса и Боб) разлетаются в разные стороны.
У каждого есть детектор, который можно повернуть под разными углами (например, 0°, 120°, 240°).
Если Эйнштейн прав (есть скрытые параметры):
Частицы заранее договорились, какой спин показывать при любом повороте детектора.
Максимальная корреляция (совпадение спинов) будет не больше 2 (в условных единицах).
Но квантовая механика говорит:
Частицы не договариваются! Они выбирают спин только в момент измерения.
Корреляция будет 2√2 ≈ 2.8 – больше, чем возможно в классическом мире.
3. Как объяснить внукам?
Сказка-метафора:
«Алиса и Боб получают по волшебной монетке. Если они подбросят их под одинаковым углом – одна всегда выпадет „орлом“, а другая „решкой“. Но если один повернёт монетку на 120° – совпадения будут в 75% случаев (хотя „по логике“ должно быть 50%). Значит, монетки – волшебные!»
Почему 75%?
В квантах вероятность совпадения = cos²(θ/2). Для θ=120°: cos²(60°) = 0.25 → несовпадение 25%, совпадение 75%.
4. Итог для внуков:
Эйнштейн: Частицы как перчатки – всё решено заранее.
Белл: Нет, они как волшебные монетки – связь возникает только при измерении!
Эксперименты (Аспект и др.) подтвердили: реальность – квантовая, корреляция 2.8.
Как проверить на пальцах?
Дайте детям две игральные кости:
Пусть договорятся, что будут показывать разные числа (1-6, 2-5, 3-4). Это «классическая» корреляция.
Теперь скажите: «А если я поверну одну кость на 120° – у вас будут совпадения в 75% случаев!» Вот это – квантовая магия.
(Если дети спросят «почему» – можно сказать: «Потому что Вселенная любит сюрпризы!»)
E-not:
Не очень понятно. Да и имена ребятишек не наши. Пусть они Аня и Ваня кидают монеты ровно вверх они крутятся и падают на плоскую поверхность. Но поверхность можно ставить под углом. Вероятносьь того что они совпадут орлом составляет 25% что совпадут решкой – 25% у Ани орел у Вани решка 25% у Ани решка у Вани орел, 25%. Мы не знаем что происходит у Вани на Альфа-Центавра. Но Аня должна предсказать точно что будет у Вани если у нее выпал орел.